Menu Close

In-AB-C-II-a-2-4R-r-a-r-I-incircle-center-I-a-excircle-center-corresponding-A-R-circumcircle-radius-r-incircle-radiu




Question Number 190104 by mnjuly1970 last updated on 27/Mar/23
              In  AB^Δ C  :                  II_( a) ^( 2)  =^?  4R ( r_( a)  − r )        I : incircle  center     I_( a)  : excircle center corresponding A     R: circumcircle radius       r: incircle radius       r_( a)  : excircle radius corresponding A
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{In}\:\:\mathrm{A}\overset{\Delta} {\mathrm{B}C}\:\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{II}_{\:{a}} ^{\:\mathrm{2}} \:\overset{?} {=}\:\mathrm{4}{R}\:\left(\:{r}_{\:{a}} \:−\:{r}\:\right) \\ $$$$ \\ $$$$\:\:\:\:\mathrm{I}\::\:{incircle}\:\:{center} \\ $$$$\:\:\:\mathrm{I}_{\:{a}} \::\:{excircle}\:{center}\:{corresponding}\:{A} \\ $$$$\:\:\:{R}:\:{circumcircle}\:{radius} \\ $$$$\:\:\:\:\:{r}:\:{incircle}\:{radius} \\ $$$$\:\:\:\:\:{r}_{\:{a}} \::\:{excircle}\:{radius}\:{corresponding}\:{A} \\ $$
Answered by mr W last updated on 27/Mar/23
Commented by mr W last updated on 27/Mar/23
r_a =((rs)/(s−a))  r_a −r=((rs)/(s−a))−r=((ra)/(s−a))=((2ra)/(−a+b+c))  II_a =((r_a −r)/(sin (A/2)))  (II_a )^2 =(((r_a −r)(r_a −r))/(sin^2  (A/2)))  (II_a )^2 =((4(r_a −r)ra)/((1−cos A)(−a+b+c)))  (II_a )^2 =((4(r_a −r)ra)/((1−((b^2 +c^2 −a^2 )/(2bc)))(−a+b+c)))  (II_a )^2 =((8(r_a −r)rabc)/((−a+b+c)(a+b−c)(a−b+c)))  (II_a )^2 =(((r_a −r)Δabc)/Δ^2 )  (II_a )^2 =(((r_a −r)abc)/Δ)  (II_a )^2 =4R(r_a −r) ✓
$${r}_{{a}} =\frac{{rs}}{{s}−{a}} \\ $$$${r}_{{a}} −{r}=\frac{{rs}}{{s}−{a}}−{r}=\frac{{ra}}{{s}−{a}}=\frac{\mathrm{2}{ra}}{−{a}+{b}+{c}} \\ $$$${II}_{{a}} =\frac{{r}_{{a}} −{r}}{\mathrm{sin}\:\frac{{A}}{\mathrm{2}}} \\ $$$$\left({II}_{{a}} \right)^{\mathrm{2}} =\frac{\left({r}_{{a}} −{r}\right)\left({r}_{{a}} −{r}\right)}{\mathrm{sin}^{\mathrm{2}} \:\frac{{A}}{\mathrm{2}}} \\ $$$$\left({II}_{{a}} \right)^{\mathrm{2}} =\frac{\mathrm{4}\left({r}_{{a}} −{r}\right){ra}}{\left(\mathrm{1}−\mathrm{cos}\:{A}\right)\left(−{a}+{b}+{c}\right)} \\ $$$$\left({II}_{{a}} \right)^{\mathrm{2}} =\frac{\mathrm{4}\left({r}_{{a}} −{r}\right){ra}}{\left(\mathrm{1}−\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{2}{bc}}\right)\left(−{a}+{b}+{c}\right)} \\ $$$$\left({II}_{{a}} \right)^{\mathrm{2}} =\frac{\mathrm{8}\left({r}_{{a}} −{r}\right){rabc}}{\left(−{a}+{b}+{c}\right)\left({a}+{b}−{c}\right)\left({a}−{b}+{c}\right)} \\ $$$$\left({II}_{{a}} \right)^{\mathrm{2}} =\frac{\left({r}_{{a}} −{r}\right)\Delta{abc}}{\Delta^{\mathrm{2}} } \\ $$$$\left({II}_{{a}} \right)^{\mathrm{2}} =\frac{\left({r}_{{a}} −{r}\right){abc}}{\Delta} \\ $$$$\left({II}_{{a}} \right)^{\mathrm{2}} =\mathrm{4}{R}\left({r}_{{a}} −{r}\right)\:\checkmark \\ $$
Commented by mnjuly1970 last updated on 28/Mar/23
 excellent sir  W thanks alot....
$$\:{excellent}\:{sir}\:\:{W}\:{thanks}\:{alot}…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *