Menu Close

In-AB-C-m-b-2-m-c-2-5-m-a-2-prove-that-A-90-m-a-median-




Question Number 169101 by mnjuly1970 last updated on 24/Apr/22
        In  AB^Δ C :    m_b ^( 2)  + m_c ^( 2) = 5 m_a ^( 2)            prove  that :   A^(  ∧)  = 90^( °)             m_a :  ( median )
$$ \\ $$$$\:\:\:\:\:\:{In}\:\:{A}\overset{\Delta} {{B}C}\::\:\:\:\:{m}_{{b}} ^{\:\mathrm{2}} \:+\:{m}_{{c}} ^{\:\mathrm{2}} =\:\mathrm{5}\:{m}_{{a}} ^{\:\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:{prove}\:\:{that}\::\:\:\:\overset{\:\:\wedge} {{A}}\:=\:\mathrm{90}^{\:°} \\ $$$$\:\:\:\:\:\:\:\:\:\:{m}_{{a}} :\:\:\left(\:{median}\:\right) \\ $$
Answered by mr W last updated on 24/Apr/22
m_a =((√(2b^2 +2c^2 −a^2 ))/2)  m_b =((√(2c^2 +2a^2 −b^2 ))/2)  m_c =((√(2a^2 +2b^2 −c^2 ))/2)  m_b ^2 +m_c ^2 =((2c^2 +2a^2 −b^2 +2a^2 +2b^2 −c^2 )/4)  m_b ^2 +m_c ^2 =((4a^2 +b^2 +c^2 )/4)  5m_a ^2 =((5(2b^2 +2c^2 −a^2 ))/4)=((4a^2 +b^2 +c^2 )/4)  10b^2 +10c^2 −5a^2 =4a^2 +b^2 +c^2   b^2 +c^2 =a^2    ⇒right angled triangle with ∠A=90°
$${m}_{{a}} =\frac{\sqrt{\mathrm{2}{b}^{\mathrm{2}} +\mathrm{2}{c}^{\mathrm{2}} −{a}^{\mathrm{2}} }}{\mathrm{2}} \\ $$$${m}_{{b}} =\frac{\sqrt{\mathrm{2}{c}^{\mathrm{2}} +\mathrm{2}{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}{\mathrm{2}} \\ $$$${m}_{{c}} =\frac{\sqrt{\mathrm{2}{a}^{\mathrm{2}} +\mathrm{2}{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }}{\mathrm{2}} \\ $$$${m}_{{b}} ^{\mathrm{2}} +{m}_{{c}} ^{\mathrm{2}} =\frac{\mathrm{2}{c}^{\mathrm{2}} +\mathrm{2}{a}^{\mathrm{2}} −{b}^{\mathrm{2}} +\mathrm{2}{a}^{\mathrm{2}} +\mathrm{2}{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{4}} \\ $$$${m}_{{b}} ^{\mathrm{2}} +{m}_{{c}} ^{\mathrm{2}} =\frac{\mathrm{4}{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\mathrm{5}{m}_{{a}} ^{\mathrm{2}} =\frac{\mathrm{5}\left(\mathrm{2}{b}^{\mathrm{2}} +\mathrm{2}{c}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)}{\mathrm{4}}=\frac{\mathrm{4}{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\mathrm{10}{b}^{\mathrm{2}} +\mathrm{10}{c}^{\mathrm{2}} −\mathrm{5}{a}^{\mathrm{2}} =\mathrm{4}{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \\ $$$${b}^{\mathrm{2}} +{c}^{\mathrm{2}} ={a}^{\mathrm{2}} \: \\ $$$$\Rightarrow{right}\:{angled}\:{triangle}\:{with}\:\angle{A}=\mathrm{90}° \\ $$
Commented by mnjuly1970 last updated on 24/Apr/22
   thanks alot  sir  W ....
$$\:\:\:{thanks}\:{alot}\:\:{sir}\:\:{W}\:…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *