Menu Close

In-AB-C-m-b-2-m-c-2-5-m-a-2-prove-that-A-90-m-a-median-




Question Number 169101 by mnjuly1970 last updated on 24/Apr/22
        In  AB^Δ C :    m_b ^( 2)  + m_c ^( 2) = 5 m_a ^( 2)            prove  that :   A^(  ∧)  = 90^( °)             m_a :  ( median )
InABCΔ:mb2+mc2=5ma2provethat:A=90°ma:(median)
Answered by mr W last updated on 24/Apr/22
m_a =((√(2b^2 +2c^2 −a^2 ))/2)  m_b =((√(2c^2 +2a^2 −b^2 ))/2)  m_c =((√(2a^2 +2b^2 −c^2 ))/2)  m_b ^2 +m_c ^2 =((2c^2 +2a^2 −b^2 +2a^2 +2b^2 −c^2 )/4)  m_b ^2 +m_c ^2 =((4a^2 +b^2 +c^2 )/4)  5m_a ^2 =((5(2b^2 +2c^2 −a^2 ))/4)=((4a^2 +b^2 +c^2 )/4)  10b^2 +10c^2 −5a^2 =4a^2 +b^2 +c^2   b^2 +c^2 =a^2    ⇒right angled triangle with ∠A=90°
ma=2b2+2c2a22mb=2c2+2a2b22mc=2a2+2b2c22mb2+mc2=2c2+2a2b2+2a2+2b2c24mb2+mc2=4a2+b2+c245ma2=5(2b2+2c2a2)4=4a2+b2+c2410b2+10c25a2=4a2+b2+c2b2+c2=a2rightangledtrianglewithA=90°
Commented by mnjuly1970 last updated on 24/Apr/22
   thanks alot  sir  W ....
thanksalotsirW.

Leave a Reply

Your email address will not be published. Required fields are marked *