Menu Close

in-AB-C-prove-that-sin-A-2-a-b-c-




Question Number 175585 by mnjuly1970 last updated on 03/Sep/22
     in AB^Δ C  prove  that:               sin ((( A)/2) ) ≤ (( a)/( b + c))       ■
inABCΔprovethat:sin(A2)ab+c◼
Commented by mahdipoor last updated on 05/Sep/22
(a/(sinA))=(b/(sinB))=(c/(sinC))=2R ⇒  (a/(b+c))=((2R.sinA)/(2R(sinB+sinC)))=((sinA)/(sinB+sinC))=   ((2sin(A/2).cos(A/2))/(sinB+sinC))=  2sin(A/2)((cos(((180−(B+C))/2)))/(sinB+sinC))=  2sin(A/2)((sin(((B+C)/2)))/(2sin(((B+C)/2))cos(((B−C)/2))))=  ((sin(A/2))/(cos((B−C)/2)))  ⇒⇒⇒⇒  sin(A/2)≤(a/(b+c)) ⇔   sin(A/2)≤((sin(A/2))/(cos((B−C)/2))) ⇔  cos(((B−C)/2))≤1
asinA=bsinB=csinC=2Rab+c=2R.sinA2R(sinB+sinC)=sinAsinB+sinC=2sin(A/2).cos(A/2)sinB+sinC=2sin(A/2)cos(180(B+C)2)sinB+sinC=2sin(A/2)sin(B+C2)2sin(B+C2)cos(BC2)=sin(A/2)cos((BC)/2)⇒⇒⇒⇒sin(A/2)ab+csin(A/2)sin(A/2)cos((BC)/2)cos(BC2)1
Commented by mnjuly1970 last updated on 03/Sep/22
zendeh bashid ostad mahdipoor   mamnoon.besiar ali bood.
zendehbashidostadmahdipoormamnoon.besiaralibood.
Commented by mahdipoor last updated on 03/Sep/22
♥
Commented by behi834171 last updated on 03/Sep/22
sir! should use:  R, in sine rule.  r, is the radii of inner circle of AB^▲ C.  ostad mehdipor! deqat lotfan.
sir!shoulduse:R,insinerule.r,istheradiiofinnercircleofABC.ostadmehdipor!deqatlotfan.
Commented by mnjuly1970 last updated on 04/Sep/22
  eradatmandim ostad ..
eradatmandimostad..
Commented by mahdipoor last updated on 05/Sep/22
mamnoonam , dorostesh kardam
mamnoonam,dorosteshkardam
Answered by behi834171 last updated on 03/Sep/22
sin(A/2)=(√(((p−b)(p−c))/(bc)))⇒  (√(((p−b)(p−c))/(bc)))≤(a/(b+c))⇒  ((√(p(p−a)(p−b)(p−c)))/( (√(p(p−a).abc))))≤((√a)/(b+c))⇒  (S/( (√(p(p−a)4R.S))))≤((√a)/(b+c))⇒((√r)/(2(√((p−a)R))))≤((√a)/(b+c))⇒  ⇒(√(r/R))≤((2(√(a(p−a))))/(b+c))⇒(r/R)≤((4a(p−a))/((b+c)^2 ))  ((4a(p−a))/((b+c)^2 ))=((2a(b+c−a))/((b+c)^2 ))=2(a/(b+c))−2((a/(b+c)))^2   =2t−2t^2   f(t)=2t−2t^2 ⇒(df/dt)=2(1−2t)=0⇒t=(1/2)  f_(min) =2×(1/2)−2×(1/4)=1−(1/2)=(1/2)⇒f≤(1/2)⇒  ⇒(r/R)≤(1/2)⇒R≥2r  .this is true.  [Euler′s rule:  d^2 =R^2 −2R.r=R(R−2r)≥0⇒R≥2r]
sinA2=(pb)(pc)bc(pb)(pc)bcab+cp(pa)(pb)(pc)p(pa).abcab+cSp(pa)4R.Sab+cr2(pa)Rab+crR2a(pa)b+crR4a(pa)(b+c)24a(pa)(b+c)2=2a(b+ca)(b+c)2=2ab+c2(ab+c)2=2t2t2f(t)=2t2t2dfdt=2(12t)=0t=12fmin=2×122×14=112=12f12rR12R2r.thisistrue.[Eulersrule:d2=R22R.r=R(R2r)0R2r]
Commented by mnjuly1970 last updated on 04/Sep/22
  zendeh bashid ostad bozorgvar  kheili ali bood.
zendehbashidostadbozorgvarkheilialibood.
Commented by behi834171 last updated on 04/Sep/22
mamnon.shoma ham binazir hasted.  zende bashid.
mamnon.shomahambinazirhasted.zendebashid.

Leave a Reply

Your email address will not be published. Required fields are marked *