Menu Close

In-ABC-a-cos-A-b-cos-B-c-cos-C-then-ABC-is-A-irregular-sides-acute-angled-triangle-B-obtuse-angled-triangle-C-right-angled-triangle-D-equilateral-triangle-E-isoceles-triangle-




Question Number 117500 by ZiYangLee last updated on 12/Oct/20
In ΔABC, (a/(cos A))=(b/(cos B))=(c/(cos C)),  then ΔABC is   A. irregular sides acute-angled triangle  B. obtuse-angled triangle  C. right-angled triangle  D. equilateral triangle  E. isoceles triangle
InΔABC,acosA=bcosB=ccosC,thenΔABCisA.irregularsidesacuteangledtriangleB.obtuseangledtriangleC.rightangledtriangleD.equilateraltriangleE.isocelestriangle
Answered by som(math1967) last updated on 12/Oct/20
D equilateral.ans  (a/(cosA))=(b/(cosB))=(c/(cosC))  ((2abc)/(b^2 +c^2 −a^2 ))=((2abc)/(c^2 +a^2 −b^2 ))=((2abc)/(a^2 +b^2 −c^2 ))  b^2 +c^2 −a^2 =c^2 +a^2 −b^2 =a^2 +b^2 −c^2   ∵b^2 +c^2 −a^2 =c^2 +a^2 −b^2   2b^2 =2a^2 ⇒b=a  again c^2 +a^2 −b^2 =a^2 +b^2 −c^2   ∴2c^2 =2b^2 ⇒c=b  ∴a=b=c
Dequilateral.ansacosA=bcosB=ccosC2abcb2+c2a2=2abcc2+a2b2=2abca2+b2c2b2+c2a2=c2+a2b2=a2+b2c2b2+c2a2=c2+a2b22b2=2a2b=aagainc2+a2b2=a2+b2c22c2=2b2c=ba=b=c
Commented by ZiYangLee last updated on 12/Oct/20
Omg so easy!
Omgsoeasy!

Leave a Reply

Your email address will not be published. Required fields are marked *