Menu Close

In-ABC-AA-BB-CC-cevians-AA-BB-CC-P-Prove-that-min-APC-BPA-CPB-min-APB-BPC-CPA-Rr-3-2-




Question Number 171688 by Shrinava last updated on 20/Jun/22
In  △ABC  AA^′  , BB^′  , CC^′  - cevians  AA^′  ∩ BB^′  ∩ CC^′  = {P}  Prove that:  min([APC^′ ],[BPA^′ ],[CPB^′ ])+min([APB^′ ],[BPC^′ ],[CPA^′ ]) ≤ ((Rr (√3))/2)
$$\mathrm{In}\:\:\bigtriangleup\mathrm{ABC} \\ $$$$\mathrm{AA}^{'} \:,\:\mathrm{BB}^{'} \:,\:\mathrm{CC}^{'} \:-\:\mathrm{cevians} \\ $$$$\mathrm{AA}^{'} \:\cap\:\mathrm{BB}^{'} \:\cap\:\mathrm{CC}^{'} \:=\:\left\{\mathrm{P}\right\} \\ $$$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{min}\left(\left[\mathrm{APC}^{'} \right],\left[\mathrm{BPA}^{'} \right],\left[\mathrm{CPB}^{'} \right]\right)+\mathrm{min}\left(\left[\mathrm{APB}^{'} \right],\left[\mathrm{BPC}^{'} \right],\left[\mathrm{CPA}^{'} \right]\right)\:\leqslant\:\frac{\mathrm{Rr}\:\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *