Menu Close

In-ABC-cos-A-cos-B-cos-C-3-2-prove-that-trianle-is-equilateral-




Question Number 54502 by math1967 last updated on 05/Feb/19
In △ABC cos A+cos B+cos C=(3/2)  prove that trianle is equilateral
InABCcosA+cosB+cosC=32provethattrianleisequilateral
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Feb/19
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Feb/19
point A,B,C lies on cosx curve  point A coordinate is (A,cosA)  point B coordinate (B,cosB)  point C coordinate(C,cosC)  △ABC  centroid is G   coordinate of G is(((x_1 +x_2 +x_3 )/3),((y_1 +y_2 +y_3 )/3))  so G is(((A+B+C)/3),((cosA+cosB+cosC)/3))  as per diagram  point Q(((A+B+C)/3),0)  point p{((A+B+C)/3),cos(((A+B+C)/3))}  from diagram  QP>QG  cos(((A+B+C)/3))>((cosA+cosB+cosC)/3)  3cos((π/3))>cosA+cosB+cosC  cosA+cosB+cosC<(3/2)  now maximum value of cosA+cosB+cosC  when A=B=C...so A=B=C=(π/3)  so cos(π/3)+cos(π/3)+cos(π/3)  =(1/2)+(1/2)+(1/2)  =(3/2) that means equilateral triangle...  [in other cases cosA+cosB+cosC<(3/2)]
pointA,B,CliesoncosxcurvepointAcoordinateis(A,cosA)pointBcoordinate(B,cosB)pointCcoordinate(C,cosC)ABCcentroidisGcoordinateofGis(x1+x2+x33,y1+y2+y33)soGis(A+B+C3,cosA+cosB+cosC3)asperdiagrampointQ(A+B+C3,0)pointp{A+B+C3,cos(A+B+C3)}fromdiagramQP>QGcos(A+B+C3)>cosA+cosB+cosC33cos(π3)>cosA+cosB+cosCcosA+cosB+cosC<32nowmaximumvalueofcosA+cosB+cosCwhenA=B=CsoA=B=C=π3socosπ3+cosπ3+cosπ3=12+12+12=32thatmeansequilateraltriangle[inothercasescosA+cosB+cosC<32]
Commented by math1967 last updated on 05/Feb/19
Thank you sir
Thankyousir
Commented by math1967 last updated on 05/Feb/19
other method  cos (A+B)+cos (B+C)+cos (C+A)=−(3/2)  ⇒(sin A−sin B)^2 +(sin B−sin C)^2 +(sin C−sin A)^2   (cos A+cos B)^2 +(cos B+cos C)^2 +(cos C+cos A)^2 =0  ∴(sin A−sin B)^2 =0⇒A=B  similarlyB=C ∴△ABC equilateral  if cos A+cos B=0 then A=π−B  not possible for triangle
othermethodcos(A+B)+cos(B+C)+cos(C+A)=32(sinAsinB)2+(sinBsinC)2+(sinCsinA)2(cosA+cosB)2+(cosB+cosC)2+(cosC+cosA)2=0(sinAsinB)2=0A=BsimilarlyB=CABCequilateralifcosA+cosB=0thenA=πBnotpossiblefortriangle
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Feb/19
bah darun...
bahdarun

Leave a Reply

Your email address will not be published. Required fields are marked *