Menu Close

In-ABC-cos-A-cos-B-cos-C-3-2-prove-that-trianle-is-equilateral-




Question Number 54502 by math1967 last updated on 05/Feb/19
In △ABC cos A+cos B+cos C=(3/2)  prove that trianle is equilateral
$${In}\:\bigtriangleup{ABC}\:\mathrm{cos}\:{A}+\mathrm{cos}\:{B}+\mathrm{cos}\:{C}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${prove}\:{that}\:{trianle}\:{is}\:{equilateral} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Feb/19
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Feb/19
point A,B,C lies on cosx curve  point A coordinate is (A,cosA)  point B coordinate (B,cosB)  point C coordinate(C,cosC)  △ABC  centroid is G   coordinate of G is(((x_1 +x_2 +x_3 )/3),((y_1 +y_2 +y_3 )/3))  so G is(((A+B+C)/3),((cosA+cosB+cosC)/3))  as per diagram  point Q(((A+B+C)/3),0)  point p{((A+B+C)/3),cos(((A+B+C)/3))}  from diagram  QP>QG  cos(((A+B+C)/3))>((cosA+cosB+cosC)/3)  3cos((π/3))>cosA+cosB+cosC  cosA+cosB+cosC<(3/2)  now maximum value of cosA+cosB+cosC  when A=B=C...so A=B=C=(π/3)  so cos(π/3)+cos(π/3)+cos(π/3)  =(1/2)+(1/2)+(1/2)  =(3/2) that means equilateral triangle...  [in other cases cosA+cosB+cosC<(3/2)]
$${point}\:{A},{B},{C}\:{lies}\:{on}\:{cosx}\:{curve} \\ $$$${point}\:{A}\:{coordinate}\:{is}\:\left({A},{cosA}\right) \\ $$$${point}\:{B}\:{coordinate}\:\left({B},{cosB}\right) \\ $$$${point}\:{C}\:{coordinate}\left({C},{cosC}\right) \\ $$$$\bigtriangleup{ABC}\:\:{centroid}\:{is}\:{G}\: \\ $$$${coordinate}\:{of}\:{G}\:{is}\left(\frac{{x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{3}} }{\mathrm{3}},\frac{{y}_{\mathrm{1}} +{y}_{\mathrm{2}} +{y}_{\mathrm{3}} }{\mathrm{3}}\right) \\ $$$${so}\:{G}\:{is}\left(\frac{{A}+{B}+{C}}{\mathrm{3}},\frac{{cosA}+{cosB}+{cosC}}{\mathrm{3}}\right) \\ $$$${as}\:{per}\:{diagram}\:\:{point}\:{Q}\left(\frac{{A}+{B}+{C}}{\mathrm{3}},\mathrm{0}\right) \\ $$$${point}\:{p}\left\{\frac{{A}+{B}+{C}}{\mathrm{3}},{cos}\left(\frac{{A}+{B}+{C}}{\mathrm{3}}\right)\right\} \\ $$$${from}\:{diagram} \\ $$$${QP}>{QG} \\ $$$${cos}\left(\frac{{A}+{B}+{C}}{\mathrm{3}}\right)>\frac{{cosA}+{cosB}+{cosC}}{\mathrm{3}} \\ $$$$\mathrm{3}{cos}\left(\frac{\pi}{\mathrm{3}}\right)>{cosA}+{cosB}+{cosC} \\ $$$${cosA}+{cosB}+{cosC}<\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${now}\:{maximum}\:{value}\:{of}\:{cosA}+{cosB}+{cosC} \\ $$$${when}\:{A}={B}={C}…{so}\:{A}={B}={C}=\frac{\pi}{\mathrm{3}} \\ $$$${so}\:{cos}\frac{\pi}{\mathrm{3}}+{cos}\frac{\pi}{\mathrm{3}}+{cos}\frac{\pi}{\mathrm{3}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}}\:{that}\:{means}\:{equilateral}\:{triangle}… \\ $$$$\left[{in}\:{other}\:{cases}\:{cosA}+{cosB}+{cosC}<\frac{\mathrm{3}}{\mathrm{2}}\right] \\ $$
Commented by math1967 last updated on 05/Feb/19
Thank you sir
$${Thank}\:{you}\:{sir} \\ $$
Commented by math1967 last updated on 05/Feb/19
other method  cos (A+B)+cos (B+C)+cos (C+A)=−(3/2)  ⇒(sin A−sin B)^2 +(sin B−sin C)^2 +(sin C−sin A)^2   (cos A+cos B)^2 +(cos B+cos C)^2 +(cos C+cos A)^2 =0  ∴(sin A−sin B)^2 =0⇒A=B  similarlyB=C ∴△ABC equilateral  if cos A+cos B=0 then A=π−B  not possible for triangle
$${other}\:{method} \\ $$$$\mathrm{cos}\:\left({A}+{B}\right)+\mathrm{cos}\:\left({B}+{C}\right)+\mathrm{cos}\:\left({C}+{A}\right)=−\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow\left(\mathrm{sin}\:{A}−\mathrm{sin}\:{B}\right)^{\mathrm{2}} +\left(\mathrm{sin}\:{B}−\mathrm{sin}\:{C}\right)^{\mathrm{2}} +\left(\mathrm{sin}\:{C}−\mathrm{sin}\:{A}\right)^{\mathrm{2}} \\ $$$$\left(\mathrm{cos}\:{A}+\mathrm{cos}\:{B}\right)^{\mathrm{2}} +\left(\mathrm{cos}\:{B}+\mathrm{cos}\:{C}\right)^{\mathrm{2}} +\left(\mathrm{cos}\:{C}+\mathrm{cos}\:{A}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\therefore\left(\mathrm{sin}\:{A}−\mathrm{sin}\:{B}\right)^{\mathrm{2}} =\mathrm{0}\Rightarrow{A}={B} \\ $$$${similarlyB}={C}\:\therefore\bigtriangleup{ABC}\:{equilateral} \\ $$$${if}\:\mathrm{cos}\:{A}+\mathrm{cos}\:{B}=\mathrm{0}\:{then}\:{A}=\pi−{B} \\ $$$${not}\:{possible}\:{for}\:{triangle} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Feb/19
bah darun...
$${bah}\:{darun}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *