Menu Close

In-ABC-I-incenter-ID-BC-IE-CA-IF-AB-D-BC-E-CA-F-AB-I-a-I-b-I-c-excenters-Prove-that-cyc-EF-sin-A-2-cyc-EF-sin-A-2-1-4r-2-R-I-a-I-




Question Number 171558 by Shrinava last updated on 17/Jun/22
In  △ABC , I-incenter  ID⊥BC , IE⊥CA , IF⊥AB  D∈(BC) , E∈(CA) , F∈(AB)  I_a  , I_b  , I_c -excenters. Prove that:  Σ_(cyc)  ((EF)/(sin (A/2)))  +  Π_(cyc)  ((EF)/(sin (A/2)))  =  ((1 + 4r^2 )/R) ∙ [I_a I_b I_c ]
$$\mathrm{In}\:\:\bigtriangleup\mathrm{ABC}\:,\:\mathrm{I}-\mathrm{incenter} \\ $$$$\mathrm{ID}\bot\mathrm{BC}\:,\:\mathrm{IE}\bot\mathrm{CA}\:,\:\mathrm{IF}\bot\mathrm{AB} \\ $$$$\mathrm{D}\in\left(\mathrm{BC}\right)\:,\:\mathrm{E}\in\left(\mathrm{CA}\right)\:,\:\mathrm{F}\in\left(\mathrm{AB}\right) \\ $$$$\mathrm{I}_{\boldsymbol{\mathrm{a}}} \:,\:\mathrm{I}_{\boldsymbol{\mathrm{b}}} \:,\:\mathrm{I}_{\boldsymbol{\mathrm{c}}} -\mathrm{excenters}.\:\mathrm{Prove}\:\mathrm{that}: \\ $$$$\underset{\boldsymbol{\mathrm{cyc}}} {\sum}\:\frac{\mathrm{EF}}{\mathrm{sin}\:\frac{\mathrm{A}}{\mathrm{2}}}\:\:+\:\:\underset{\boldsymbol{\mathrm{cyc}}} {\prod}\:\frac{\mathrm{EF}}{\mathrm{sin}\:\frac{\mathrm{A}}{\mathrm{2}}}\:\:=\:\:\frac{\mathrm{1}\:+\:\mathrm{4}\boldsymbol{\mathrm{r}}^{\mathrm{2}} }{\mathrm{R}}\:\centerdot\:\left[\mathrm{I}_{\boldsymbol{\mathrm{a}}} \mathrm{I}_{\boldsymbol{\mathrm{b}}} \mathrm{I}_{\boldsymbol{\mathrm{c}}} \right] \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *