Menu Close

In-ABC-O-circumcentr-G-centroid-Prove-that-OG-BC-b-2-c-2-2-4a-2-9R-2-a-2-b-2-c-2-




Question Number 171985 by Shrinava last updated on 22/Jun/22
In  △ABC , O-circumcentr , G-centroid.  Prove that:  OG∥BC⇔(b^2 −c^2 )^2 =4a^2 (9R^2 −a^2 −b^2 −c^2 )
$$\mathrm{In}\:\:\bigtriangleup\mathrm{ABC}\:,\:\mathrm{O}-\mathrm{circumcentr}\:,\:\mathrm{G}-\mathrm{centroid}. \\ $$$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{OG}\parallel\mathrm{BC}\Leftrightarrow\left(\mathrm{b}^{\mathrm{2}} −\mathrm{c}^{\mathrm{2}} \right)^{\mathrm{2}} =\mathrm{4a}^{\mathrm{2}} \left(\mathrm{9R}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} −\mathrm{c}^{\mathrm{2}} \right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *