Menu Close

In-ABC-r-1-r-2-and-r-3-are-the-exradii-as-shown-Prove-that-r-1-s-a-r-2-s-b-and-r-3-s-c-Here-s-a-b-c-2-




Question Number 16214 by Tinkutara last updated on 19/Jun/17
In ΔABC, r_1 , r_2  and r_3  are the exradii  as shown. Prove that r_1  = (Δ/(s − a)) ,  r_2  = (Δ/(s − b)) and r_3  = (Δ/(s − c)) . Here  s = ((a + b + c)/2) .
InΔABC,r1,r2andr3aretheexradiiasshown.Provethatr1=Δsa,r2=Δsbandr3=Δsc.Heres=a+b+c2.
Commented by Tinkutara last updated on 19/Jun/17
Commented by Tinkutara last updated on 20/Jun/17
Thanks Sir!
ThanksSir!
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 20/Jun/17
S=area of ΔABC,p=semipremetee.  CE=r_1 .cotg((π/2)−(C/2))=r_1 .tg(C/2)  tg(A/2)=(r_1 /(AE))⇒r_1 =AE.tg(A/2)=(b+r_1 .tg(C/2)).tg(A/2)  ⇒r_1 (1−tg(A/2).tg(C/2))=b.tg(A/2)  ⇒r_1 =((b.tg(A/2))/(1−tg(A/2).tg(C/2)))  tg(A/2)=((sin(A/2))/(cos(A/2)))=((√((1−cosA)/2))/( (√((1+cosA)/2))))=(√((1−((b^2 +c^2 −a^2 )/(2bc)))/(1+((b^2 +c^2 −a^2 )/(2bc)))))=  =(√((a^2 −(b−c)^2 )/((b+c)^2 −a^2 )))=(√(((a+c−b)(a+b−c))/((b+c+a)(b+c−a))))=  =(√((2(p−b).2(p−c))/(2p.2(p−a))))=(√(((p−b)(p−c))/(p(p−a))))  ⇒r_1 =((b.(√(((p−b)(p−c))/(p(p−a)))))/(1−(√((((p−b)(p−c))/(p(p−a))).(((p−a)(p−b))/(p(p−c)))))))=  =((b.((√(p(p−a)(p−b)(p−c)))/(p(p−a))))/(1−((p−b)/p)))=(((b.S)/(p(p−a)))/((p−(p−b))/p))=  =((b.S)/(b(p−a)))=(S/(p−a))  .■
S=areaofΔABC,p=semipremetee.CE=r1.cotg(π2C2)=r1.tgC2tgA2=r1AEr1=AE.tgA2=(b+r1.tgC2).tgA2r1(1tgA2.tgC2)=b.tgA2r1=b.tgA21tgA2.tgC2tgA2=sinA2cosA2=1cosA21+cosA2=1b2+c2a22bc1+b2+c2a22bc==a2(bc)2(b+c)2a2=(a+cb)(a+bc)(b+c+a)(b+ca)==2(pb).2(pc)2p.2(pa)=(pb)(pc)p(pa)r1=b.(pb)(pc)p(pa)1(pb)(pc)p(pa).(pa)(pb)p(pc)==b.p(pa)(pb)(pc)p(pa)1pbp=b.Sp(pa)p(pb)p==b.Sb(pa)=Spa.◼
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 20/Jun/17
AD=AE=b+r_1 .tg(C/2)  DE^2 =r_1 ^2 +r_1 ^2 −2r_1 ^2 cos(180−A)=  =2r_1 ^2 (1+cosA)=4r_1 ^2 cos^2 (A/2)⇒  DE=2r_1 .cos(A/2)  DE^2 =AD^2 +AD^2 −2AD^2 .cosA=  =2AD^2 (1−cosA)=4AD^2 .sin^2 (A/2)  ⇒DE=2AD.sin(A/2)=2r_1 .cos(A/2)⇒  b+r_1 .tg(C/2)=r_1 .cotg(A/2)⇒r_1 =((b.tg(A/2))/(1−tg(A/2).tg(C/2)))  tg(A/2)=(S/(p(p−a))),tg(A/2).tg(C/2)=((p−b)/p)  ⇒r_1 =(((b.S)/(p(p−a)))/(1−((p−b)/p)))=((b.S)/(b.(p−a)))=(S/(p−a)) .■  note: r_1 =p.tg(A/2),r_2 =p.tg(B/2),r_3 =p.tg(C/2)  tg(A/2).tg(B/2).tg(C/2)=(√(((p−b)(p−c)(p−a)(p−c)(p−a)(p−b))/(p(p−a).p(p−b).p(p−c))))=(S/p^2 )  ⇒S=p^2 .tg(A/2).tg(B/2).tg(C/2)=p^2 .(r_1 /p).(r_2 /p).(r_3 /p)  ⇒S.p=r_1 .r_2 .r_3 ⇒S.(p.r)=r.r_1 .r_2 .r_3   ⇒S^2 =r.r_1 .r_2 .r_3 ⇒S=(√(r.r_1 .r_2 .r_3 ))  .
AD=AE=b+r1.tgC2DE2=r12+r122r12cos(180A)==2r12(1+cosA)=4r12cos2A2DE=2r1.cosA2DE2=AD2+AD22AD2.cosA==2AD2(1cosA)=4AD2.sin2A2DE=2AD.sinA2=2r1.cosA2b+r1.tgC2=r1.cotgA2r1=b.tgA21tgA2.tgC2tgA2=Sp(pa),tgA2.tgC2=pbpr1=b.Sp(pa)1pbp=b.Sb.(pa)=Spa.◼note:r1=p.tgA2,r2=p.tgB2,r3=p.tgC2tgA2.tgB2.tgC2=(pb)(pc)(pa)(pc)(pa)(pb)p(pa).p(pb).p(pc)=Sp2S=p2.tgA2.tgB2.tgC2=p2.r1p.r2p.r3pS.p=r1.r2.r3S.(p.r)=r.r1.r2.r3S2=r.r1.r2.r3S=r.r1.r2.r3.
Answered by ajfour last updated on 19/Jun/17
Commented by Tinkutara last updated on 22/Jun/17
Then this procedure is wrong? Or how  to proceed further using this method?
Thenthisprocedureiswrong?Orhowtoproceedfurtherusingthismethod?
Commented by ajfour last updated on 22/Jun/17
lengths  of tangent from B to  excircle of radius r_1  are     BD=BE =ma   lengths  of tangent from C to  excircle of radius r_1  are     CD=CF =na     ma+na = a  ⇒   m+n = 1   ......(i)  If Δ is the area of △ABC,  Area of entire figure (consider  AG joined (D may or may not   lie on it) is      A=Δ+2[(r_1 /2)(ma)+(r_1 /2)(na)]         =Δ+r_1 (ma+na)         A =Δ+r_1 a            (as ma+na=a)                                   ....(ii)  but A is also given by   A=(1/2)(r_1 )(c+ma)+(1/2)(r_1 )(b+na)      = (r_1 /2)(b+c+ma+na)    A = (r_1 /2)(a+b+c)           (as m+n=1)                                    ....(iii)    equating   (ii) and (iii):    A = (r_1 /2)(a+b+c) = Δ+r_1 a  or      r_1 s−r_1 a =Δ       r_1  = (𝚫/(s−a))       where s=((a+b+c)/2) .   similarly  r_2  =(Δ/(s−b))and r_3 =(Δ/(s−c))    i am thinking how to prove..
lengthsoftangentfromBtoexcircleofradiusr1areBD=BE=malengthsoftangentfromCtoexcircleofradiusr1areCD=CF=nama+na=am+n=1(i)IfΔistheareaofABC,Areaofentirefigure(considerAGjoined(Dmayormaynotlieonit)isA=Δ+2[r12(ma)+r12(na)]=Δ+r1(ma+na)A=Δ+r1a(asma+na=a).(ii)butAisalsogivenbyA=12(r1)(c+ma)+12(r1)(b+na)=r12(b+c+ma+na)A=r12(a+b+c)(asm+n=1).(iii)equating(ii)and(iii):A=r12(a+b+c)=Δ+r1aorr1sr1a=Δr1=Δsawheres=a+b+c2.similarlyr2=Δsbandr3=Δsciamthinkinghowtoprove..
Commented by mrW1 last updated on 19/Jun/17
Excellent sir!
Excellentsir!
Commented by ajfour last updated on 22/Jun/17
 error writing eqn. (i) but i have  used ma+na = a , itself, you can  see for yourself.
errorwritingeqn.(i)butihaveusedma+na=a,itself,youcanseeforyourself.
Answered by mrW1 last updated on 20/Jun/17
Proof in an other way:    The incircle of ΔABC has the radius  r_i =(Δ/s)  with Δ=area of ΔABC and  s=((a+b+c)/2)    When we extend B and C to B′ and C′,  with B′C′ ∣∣ BC, see diagram, then  the excircle r_1  becomes the incircle   of the new triangle ΔAB′C′.
Proofinanotherway:TheincircleofΔABChastheradiusri=ΔswithΔ=areaofΔABCands=a+b+c2WhenweextendBandCtoBandC,withBC∣∣BC,seediagram,thentheexcircler1becomestheincircleofthenewtriangleΔABC.
Commented by mrW1 last updated on 19/Jun/17
Commented by mrW1 last updated on 20/Jun/17
Height of ΔABC is h_A =AD  since Δ=(1/2)ah_A   ⇒ h_A =((2Δ)/a)    Height of ΔAB′C′ is h_(A′) =AD′  h_(A′) =h_A +2r_1     since ΔAB′C ∼ ΔABC, we have  (r_1 /r_i )=(h_(A′) /h_A )=((h_A +2r_1 )/h_A )=1+((2r_1 )/h_A )=1+((ar_1 )/Δ)  r_1 Δ=r_i Δ+ar_1 r_i   ((Δ/r_i )−a)r_1 =Δ  (s−a)r_1 =Δ  ⇒ r_1 =(Δ/(s−a))  similarly  ⇒ r_2 =(Δ/(s−b))  ⇒ r_3 =(Δ/(s−c))    additionally we get:  rr_1 r_2 r_3 =(Δ^4 /(s(s−a)(s−b)(s−c)))=(Δ^4 /Δ^2 )=Δ^2   ⇒Δ=(√(rr_1 r_2 r_3 ))
HeightofΔABCishA=ADsinceΔ=12ahAhA=2ΔaHeightofΔABCishA=ADhA=hA+2r1sinceΔABCΔABC,wehaver1ri=hAhA=hA+2r1hA=1+2r1hA=1+ar1Δr1Δ=riΔ+ar1ri(Δria)r1=Δ(sa)r1=Δr1=Δsasimilarlyr2=Δsbr3=Δscadditionallyweget:rr1r2r3=Δ4s(sa)(sb)(sc)=Δ4Δ2=Δ2Δ=rr1r2r3
Commented by Tinkutara last updated on 20/Jun/17
Thanks Sir!
ThanksSir!

Leave a Reply

Your email address will not be published. Required fields are marked *