Menu Close

In-ABC-sides-a-b-c-are-roots-of-the-equation-x-3-px-2-qx-r-0-Prove-that-area-of-ABC-is-1-4-p-4pq-p-3-8r-




Question Number 15893 by Tinkutara last updated on 15/Jun/17
In ΔABC, sides a, b, c are roots of the  equation x^3  − px^2  + qx − r = 0. Prove  that area of ΔABC is  (1/4)(√(p(4pq − p^3  − 8r)))
InΔABC,sidesa,b,carerootsoftheequationx3px2+qxr=0.ProvethatareaofΔABCis14p(4pqp38r)
Answered by RasheedSoomro last updated on 15/Jun/17
It can be shown in above case that   { ((a+b+c=−(−p)=p  )),((ab+bc+ca=q)),(( abc=−(−r)=r)) :}  ∴ s=((a+b+c)/2)=(p/2)  We know that the area of triangle      ▲=(√(s(s−a)(s−b)(s−c)))  where a,b,c are sides and s is semiperimeter  of the triangle.  ▲=(√((p/2)((p/2)−a)((p/2)−b)((p/2)−c)))  ▲=(√((p/2)(((p−2a)/2))(((p−2b)/2))(((p−2c)/2))))  ▲=(1/4)(√(p(p−2a)(p−2b)(p−2c)))  ▲=(1/4)(√(p{p^3 −2ap^2 −2bp^2 −2cp^2 +4abp+4bcp+4cap−8abc}))  ▲=(1/4)(√(p{p^3 −2p^2 (a+b+c)+4p(ab+bc+ca)−8(abc)}))  ▲=(1/4)(√(p{p^3 −2p^2 (p)+4p(q)−8(r)}))  ▲=(1/4)(√(p{p^3 −2p^3 +4pq−8r}))  ▲=(1/4)(√(p{−p^3 +4pq−8r}))  ▲=(1/4)(√(p(4pq−p^3 −8r)))
Itcanbeshowninabovecasethat{a+b+c=(p)=pab+bc+ca=qabc=(r)=rs=a+b+c2=p2Weknowthattheareaoftriangle=s(sa)(sb)(sc)wherea,b,caresidesandsissemiperimeterofthetriangle.=p2(p2a)(p2b)(p2c)=p2(p2a2)(p2b2)(p2c2)=14p(p2a)(p2b)(p2c)=14p{p32ap22bp22cp2+4abp+4bcp+4cap8abc}=14p{p32p2(a+b+c)+4p(ab+bc+ca)8(abc)}=14p{p32p2(p)+4p(q)8(r)}=14p{p32p3+4pq8r}=14p{p3+4pq8r}=14p(4pqp38r)
Commented by Tinkutara last updated on 15/Jun/17
Thanks Sir!
ThanksSir!

Leave a Reply

Your email address will not be published. Required fields are marked *