Menu Close

In-ABC-with-usual-notation-r-1-bc-r-2-ca-r-3-ab-is-1-1-r-1-R-2-1-r-1-2R-3-1-r-1-2R-4-1-r-1-R-




Question Number 16430 by Tinkutara last updated on 22/Jun/17
In ΔABC with usual notation  (r_1 /(bc)) + (r_2 /(ca)) + (r_3 /(ab)) is  (1) (1/r) − (1/R)  (2) (1/r) − (1/(2R))  (3) (1/r) + (1/(2R))  (4) (1/r) + (1/R)
InΔABCwithusualnotationr1bc+r2ca+r3abis(1)1r1R(2)1r12R(3)1r+12R(4)1r+1R
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 22/Jun/17
answer (2)
answer(2)
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 23/Jun/17
because this formula is in any trianvles  you can compute it for a equilateral  triangle and find the right answer.  in equilateral triangle:  1)R=2r  r_a =r_b =r_c =(S/(p−a))=((a^2 ((√3)/4))/(((3a)/2)−a))=a((√3)/2)=2RsinA.((√3)/2)=  =2R×((√3)/2).((√3)/2)=((3R)/2)  ⇒Σ(r_a /(bc))=3×((a((√3)/2))/a^2 )=3×(((3R)/2)/(3R^2 ))=(3/(2R))  answer(1):(1/r)−(1/R)=((R−r)/(r.R))=((R−.5R)/(.5R.R))=(1/R)  answer(2):(1/r)−(1/(2R))=((2R−r)/(2R.r))=((2R−.5R)/(2R×.5R))=(3/(2R))  answer(3):(1/r)+(1/(2R))=((2R+r)/(2R.r))=((2R+.5R)/(2R×.5R))=(5/(2R))  answer(4):(1/r)+(1/R)=((R+r)/(R.r))=((R+.5R)/(R×.5R))=(3/R).
becausethisformulaisinanytrianvlesyoucancomputeitforaequilateraltriangleandfindtherightanswer.inequilateraltriangle:1)R=2rra=rb=rc=Spa=a2343a2a=a32=2RsinA.32==2R×32.32=3R2Σrabc=3×a32a2=3×3R23R2=32Ranswer(1):1r1R=Rrr.R=R.5R.5R.R=1Ranswer(2):1r12R=2Rr2R.r=2R.5R2R×.5R=32Ranswer(3):1r+12R=2R+r2R.r=2R+.5R2R×.5R=52Ranswer(4):1r+1R=R+rR.r=R+.5RR×.5R=3R.
Answered by Tinkutara last updated on 06/Jul/17
Using r_1  = 4R sin (A/2) cos (B/2) cos (C/2) and  r = 4R sin (A/2) sin (B/2) sin (C/2), we get  (r_1 /(bc)) = ((4R sin (A/2) cos (B/2) cos (C/2))/(16R^2  sin (B/2) sin (C/2) cos (B/2) cos (C/2)))  = ((sin (A/2))/(4R sin (B/2) sin (C/2)))  Similarly we write all the terms.  (r_1 /(bc)) + (r_2 /(ca)) + (r_3 /(ab)) = (1/(4R sin (A/2) sin (B/2) sin (C/2)))(sin^2  (A/2) + sin^2  (B/2) + sin^2  (C/2))  = (1/(2r))(1 − cos A + 1 − cos B + 1 − cos C)  = (1/(2r))(3 − 1 − (r/R)) = (1/r) − (1/(2R))
Usingr1=4RsinA2cosB2cosC2andr=4RsinA2sinB2sinC2,wegetr1bc=4RsinA2cosB2cosC216R2sinB2sinC2cosB2cosC2=sinA24RsinB2sinC2Similarlywewritealltheterms.r1bc+r2ca+r3ab=14RsinA2sinB2sinC2(sin2A2+sin2B2+sin2C2)=12r(1cosA+1cosB+1cosC)=12r(31rR)=1r12R

Leave a Reply

Your email address will not be published. Required fields are marked *