Menu Close

In-an-A-p-the-sum-of-first-n-terms-is-P-the-sum-of-the-next-n-terms-is-Q-and-the-sum-of-further-next-n-terms-is-R-Show-that-P-Q-R-is-an-A-P-




Question Number 46805 by 786786AM last updated on 31/Oct/18
In an A.p., the sum of first n terms is P , the sum of the next n terms is Q and   the sum of further next n terms is R. Show that P, Q, R is an A.P.
InanA.p.,thesumoffirstntermsisP,thesumofthenextntermsisQandthesumoffurthernextntermsisR.ShowthatP,Q,RisanA.P.
Answered by tanmay.chaudhury50@gmail.com last updated on 31/Oct/18
first term is a  and common difference is d  P=(n/2)[2a+(n−1)d].....(1)  P+Q=((2n)/2)[2a+(2n−1)d]  P+Q+R=((3n)/2)[2a+(3n−1)d]  Q=((2n)/2)[2a+(2n−1)d]−(n/2)[2a+(n−1)d]       =(n/2)[4a+4nd−2d−2a−nd+d]        =(n/2)[2a+(3n−1)d]  Q−P  =(n/2)[2a+(3n−1)d−2a−(n−1)d]     =(n/2)[(3n−1−n+1)d     =n^2 d  R=P+Q+R−(P+Q)  R=((3n)/2)[2a+(3n−1)d]−((2n)/2)[{2a+(2n−1d)]  R=(n/2)[6a+9nd−3d−4a−4nd+2d]  R=(n/2)[2a+(5n−1)d]  R−Q  =(n/2)[2a+(5n−1)d]−(n/2)[2a+(3n−1)d]  =(n/2)[(5n−1−3n+1)d]  =(n/2)×2nd  =n^2 d  Q−P=R−Q  so P,Q,R  in A.P
firsttermisaandcommondifferenceisdP=n2[2a+(n1)d]..(1)P+Q=2n2[2a+(2n1)d]P+Q+R=3n2[2a+(3n1)d]Q=2n2[2a+(2n1)d]n2[2a+(n1)d]=n2[4a+4nd2d2and+d]=n2[2a+(3n1)d]QP=n2[2a+(3n1)d2a(n1)d]=n2[(3n1n+1)d=n2dR=P+Q+R(P+Q)R=3n2[2a+(3n1)d]2n2[{2a+(2n1d)]R=n2[6a+9nd3d4a4nd+2d]R=n2[2a+(5n1)d]RQ=n2[2a+(5n1)d]n2[2a+(3n1)d]=n2[(5n13n+1)d]=n2×2nd=n2dQP=RQsoP,Q,RinA.P
Commented by 786786AM last updated on 01/Nov/18
Tk yu sir.
Tkyusir.
Commented by tanmay.chaudhury50@gmail.com last updated on 02/Nov/18
most welcome...
mostwelcome
Answered by MrW3 last updated on 01/Nov/18
let d=common difference  P=a_1 +a_2 +...+a_n   Q=a_(n+1) +a_(n+2) +...+a_(2n) =(a_1 +nd)+(a_2 +nd)+...+(a_n +nd)  =(a_1 +a_2 +...+a_n )+n×nd  =P+n^2 d  ⇒P−Q=n^2 d  similarly  R=a_(2n+1) +a_(2n+2) +...+a_(3n) =Q+n^2 d  ⇒R−Q=n^2 d    since R−Q=Q−P  ⇒P,Q,R are in A.P.
letd=commondifferenceP=a1+a2++anQ=an+1+an+2++a2n=(a1+nd)+(a2+nd)++(an+nd)=(a1+a2++an)+n×nd=P+n2dPQ=n2dsimilarlyR=a2n+1+a2n+2++a3n=Q+n2dRQ=n2dsinceRQ=QPP,Q,RareinA.P.

Leave a Reply

Your email address will not be published. Required fields are marked *