Question Number 46805 by 786786AM last updated on 31/Oct/18

Answered by tanmay.chaudhury50@gmail.com last updated on 31/Oct/18
![first term is a and common difference is d P=(n/2)[2a+(n−1)d].....(1) P+Q=((2n)/2)[2a+(2n−1)d] P+Q+R=((3n)/2)[2a+(3n−1)d] Q=((2n)/2)[2a+(2n−1)d]−(n/2)[2a+(n−1)d] =(n/2)[4a+4nd−2d−2a−nd+d] =(n/2)[2a+(3n−1)d] Q−P =(n/2)[2a+(3n−1)d−2a−(n−1)d] =(n/2)[(3n−1−n+1)d =n^2 d R=P+Q+R−(P+Q) R=((3n)/2)[2a+(3n−1)d]−((2n)/2)[{2a+(2n−1d)] R=(n/2)[6a+9nd−3d−4a−4nd+2d] R=(n/2)[2a+(5n−1)d] R−Q =(n/2)[2a+(5n−1)d]−(n/2)[2a+(3n−1)d] =(n/2)[(5n−1−3n+1)d] =(n/2)×2nd =n^2 d Q−P=R−Q so P,Q,R in A.P](https://www.tinkutara.com/question/Q46806.png)
Commented by 786786AM last updated on 01/Nov/18

Commented by tanmay.chaudhury50@gmail.com last updated on 02/Nov/18

Answered by MrW3 last updated on 01/Nov/18
