Menu Close

In-an-A-P-the-sum-of-p-terms-is-q-and-the-sum-of-q-terms-is-p-Prove-that-the-sum-of-p-q-terms-is-p-q-




Question Number 21502 by 786786AM last updated on 25/Sep/17
In an A.P, the sum of p terms is q and the sum of q terms is p.  Prove that the sum of (p+q) terms is −(p+q).
InanA.P,thesumofptermsisqandthesumofqtermsisp.Provethatthesumof(p+q)termsis(p+q).
Answered by $@ty@m last updated on 25/Sep/17
ATQ  S_p =q  (p/2)[2a+(p−1)d]=q  ⇒2a+(p−1)d=((2q)/p) −−(1)  S_q =p  (q/2)[2a+(q−1)d]=p  ⇒2a+(q−1)d=((2p)/q) −−(2)  Subtracting (2) from (1)  (p−1−q+1)d=((2q)/p)−((2p)/q)  (p−q)d=((2(q^2 −p^2 ))/(pq))  d=((−2(p+q))/(pq))   −−(3)  ∴ from (1),  2a+(p−1)((−2(p+q))/(pq))=((2q)/p)  2a=((2(p−1)(p+q))/(pq))+((2q)/p)  −−−(4)  ∴ S_(p+q) =((p+q)/2)[2a+(p+q−1)d]  ⇒S_(p+q) =((p+q)/2)[((2(p−1)(p+q))/(pq))+((2q)/p)+(p+q−1)((−2(p+q))/(pq))]                                  from (3) &(4)                 =((2(p+q))/(2pq))[p^2 −p+pq−q+q^2 −(p+q)^2 +p+q]                 =((p+q)/(pq))×(−pq)                 =−(p+q)                  Q.E.D.
ATQSp=qp2[2a+(p1)d]=q2a+(p1)d=2qp(1)Sq=pq2[2a+(q1)d]=p2a+(q1)d=2pq(2)Subtracting(2)from(1)(p1q+1)d=2qp2pq(pq)d=2(q2p2)pqd=2(p+q)pq(3)from(1),2a+(p1)2(p+q)pq=2qp2a=2(p1)(p+q)pq+2qp(4)Sp+q=p+q2[2a+(p+q1)d]Sp+q=p+q2[2(p1)(p+q)pq+2qp+(p+q1)2(p+q)pq]from(3)&(4)=2(p+q)2pq[p2p+pqq+q2(p+q)2+p+q]=p+qpq×(pq)=(p+q)Q.E.D.

Leave a Reply

Your email address will not be published. Required fields are marked *