Question Number 21429 by Tinkutara last updated on 23/Sep/17
$$\mathrm{In}\:\mathrm{any}\:\Delta{ABC},\:\Sigma{a}^{\mathrm{2}} \left(\mathrm{sin}\:{B}\:−\:\mathrm{sin}\:{C}\right)\:= \\ $$
Answered by $@ty@m last updated on 23/Sep/17
$${We}\:{have} \\ $$$$\frac{{a}}{\mathrm{sin}\:{A}}=\frac{{b}}{\mathrm{sin}\:{B}}=\frac{{c}}{\mathrm{sin}\:{C}}={k},\:{say} \\ $$$$\therefore\Sigma{a}^{\mathrm{2}} \left(\mathrm{sin}\:{B}\:−\:\mathrm{sin}\:{C}\right)\:= \\ $$$$\Sigma{a}^{\mathrm{2}} \left(\frac{{b}−{c}}{{k}}\right) \\ $$$$=\frac{\mathrm{1}}{{k}}\Sigma{a}^{\mathrm{2}} \left({b}−{c}\right) \\ $$$$=\frac{\mathrm{1}}{{k}}\left\{{a}^{\mathrm{2}} \left({b}−{c}\right)+{b}^{\mathrm{2}} \left({c}−{a}\right)+{c}^{\mathrm{2}} \left({a}−{b}\right)\right\} \\ $$$$=\frac{\mathrm{1}}{{k}}\left\{{a}^{\mathrm{2}} \left({b}−{c}\right)+{b}^{\mathrm{2}} \left({c}−{b}+{b}−{a}\right)+{c}^{\mathrm{2}} \left({a}−{b}\right)\right\} \\ $$$$=\frac{\mathrm{1}}{{k}}\left[\left\{{a}^{\mathrm{2}} \left({b}−{c}\right)−{b}^{\mathrm{2}} \left({b}−{c}\right)\right\}+\left\{−{b}^{\mathrm{2}} \left({a}−{b}\right)+{c}^{\mathrm{2}} \left({a}−{b}\right)\right\}\right] \\ $$$$=\frac{\mathrm{1}}{{k}}\left\{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\left({b}−{c}\right)−\left({b}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)\left({a}−{b}\right)\right\} \\ $$$$=\frac{\mathrm{1}}{{k}}\left({a}−{b}\right)\left({b}−{c}\right)\left\{{a}+{b}−\left({b}+{c}\right)\right\} \\ $$$$=\frac{\mathrm{1}}{{k}}\left({a}−{b}\right)\left({b}−{c}\right)\left\{{a}−{c}\right\} \\ $$$$=−\left(\mathrm{sin}\:{A}−\mathrm{sin}\:{B}\right)\left({b}−{c}\right)\left({c}−{a}\right) \\ $$
Commented by Tinkutara last updated on 23/Sep/17
$$\mathrm{The}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{a}\:\mathrm{whole}\:\mathrm{number},\:\mathrm{not} \\ $$$$\mathrm{this}\:\mathrm{expression}.\:\mathrm{Maybe}\:\mathrm{it}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{simplified}\:\mathrm{further}. \\ $$