Question Number 21431 by Tinkutara last updated on 23/Sep/17
$$\mathrm{In}\:\mathrm{any}\:\Delta{ABC},\:{a}\left({b}\:\mathrm{cos}\:{C}\:−\:{c}\:\mathrm{cos}\:{B}\right)\:= \\ $$
Answered by $@ty@m last updated on 23/Sep/17
$$={ab}\mathrm{cos}\:{C}−{ac}\mathrm{cos}\:{B} \\ $$$$=\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{2}}−\frac{{c}^{\mathrm{2}} +{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$=\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} −{c}^{\mathrm{2}} −{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$={b}^{\mathrm{2}} −{c}^{\mathrm{2}} \\ $$
Commented by Tinkutara last updated on 23/Sep/17
$$\mathrm{I}\:\mathrm{also}\:\mathrm{got}\:\mathrm{this}\:\mathrm{but}\:\mathrm{book}\:\mathrm{says}\:\mathrm{0}. \\ $$
Answered by behi8341.7@gmail.com last updated on 23/Sep/17
$$\mathrm{a}=\mathrm{b}.\mathrm{cosC}+\mathrm{c}.\mathrm{cosB} \\ $$$$\mathrm{bcosC}−\mathrm{c}.\mathrm{cosB}=\mathrm{2R}\left(\mathrm{sinBcosC}−\mathrm{sinC}.\mathrm{cosB}\right)= \\ $$$$=\mathrm{2Rsin}\left(\mathrm{B}−\mathrm{C}\right)=\mathrm{0}\Rightarrow\mathrm{B}=\mathrm{C} \\ $$$$\left(\mathrm{only}\:\mathrm{in}\:\mathrm{isoscale}\:\mathrm{triangle}\right) \\ $$$$\Rightarrow\mathrm{LHS}=\mathrm{2RsinA}.\mathrm{2R}.\mathrm{sin}\left(\mathrm{B}−\mathrm{C}\right) \\ $$$$=\mathrm{4R}^{\mathrm{2}} .\mathrm{sin}\left(\mathrm{180}−\mathrm{B}−\mathrm{C}\right)\mathrm{sin}\left(\mathrm{B}−\mathrm{C}\right)= \\ $$$$=\mathrm{4R}^{\mathrm{2}} .\mathrm{sin}\left(\mathrm{B}+\mathrm{C}\right).\mathrm{sin}\left(\mathrm{B}−\mathrm{C}\right)= \\ $$$$=\mathrm{4R}^{\mathrm{2}} .\frac{\mathrm{cos}\left(\mathrm{B}−\mathrm{C}−\mathrm{B}−\mathrm{C}\right)−\mathrm{cos}\left(\mathrm{B}−\mathrm{C}+\mathrm{B}+\mathrm{C}\right)}{\mathrm{2}}= \\ $$$$=\mathrm{2R}^{\mathrm{2}} .\left(\mathrm{cos2C}−\mathrm{cos2B}\right)= \\ $$$$=\mathrm{2R}^{\mathrm{2}} \left[\mathrm{2cos}^{\mathrm{2}} \mathrm{C}−\mathrm{1}−\mathrm{2cos}^{\mathrm{2}} \mathrm{B}+\mathrm{1}\right]= \\ $$$$=\mathrm{4R}^{\mathrm{2}} \left(\mathrm{cos}^{\mathrm{2}} \mathrm{C}−\mathrm{cos}^{\mathrm{2}} \mathrm{B}\right)\neq\mathrm{0}\left(\mathrm{in}\:\mathrm{general}\right) \\ $$
Commented by Tinkutara last updated on 24/Sep/17
$$\mathrm{Thanks},\:\mathrm{book}\:\mathrm{has}\:\mathrm{a}\:\mathrm{typo}. \\ $$
Answered by myintkhaing last updated on 24/Sep/17
$$=\frac{\left(\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} −\mathrm{c}^{\mathrm{2}} \right)}{\mathrm{2}}\:−\frac{\left(\mathrm{c}^{\mathrm{2}} +\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} \right)}{\mathrm{2}} \\ $$$$=\frac{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} −\mathrm{c}^{\mathrm{2}} −\mathrm{c}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} }{\mathrm{2}}\:=\mathrm{b}^{\mathrm{2}} −\mathrm{c}^{\mathrm{2}} \\ $$