Menu Close

In-any-triangle-ABC-a-cot-A-b-cot-B-c-cot-C-is-equal-to-1-r-R-2-r-R-3-2-r-R-4-2-r-R-




Question Number 16358 by Tinkutara last updated on 21/Jun/17
In any triangle ABC, a cot A + b cot B  + c cot C is equal to  (1) r + R  (2) r − R  (3) 2(r + R)  (4) 2(r − R)
InanytriangleABC,acotA+bcotB+ccotCisequalto(1)r+R(2)rR(3)2(r+R)(4)2(rR)
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 21/Jun/17
answer (3).
answer(3).
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 21/Jun/17
acotgA=((2RsinA.cosA)/(sinA))=2RcosA  ⇒LHS=2R(cosA+cosB+cosC)  ΣcosA=2cos((A+B)/2).cos((A−B)/2)+cos(180−A−B)=  =2cos((A+B)/2).cos((A−B)/2)−2cos^2 ((A+B)/2)+1=  2cos((A+B)/2)(cos((A−B)/2)−cos((A+B)/2))+1=  =2cos((180−C)/2).2sin(A/2)sin(B/2)+1=  =4sin(A/2)sin(B/2)sin(C/2)+1  sin(A/2)=(√((1−cosA)/2))=(√((1−((b^2 +c^2 −a^2 )/(2bc)))/2))=  =(√(((a+b−c)(a+c−b))/(4bc)))=(√(((p−b)(p−c))/(bc)))  ⇒Πsin(A/2)=(√(((p−b)(p−c)(p−a)(p−c)(p−a)(p−b))/(a^2 b^2 c^2 )))=  =(((p−a)(p−b)(p−c))/(abc))=((S^2 /p)/(4R.S))=(S/(4R.p))=(r/(4R))  ⇒LHS=2R(4×(r/(4R))+1)=2r+2R=2(r+R) .■
acotgA=2RsinA.cosAsinA=2RcosALHS=2R(cosA+cosB+cosC)ΣcosA=2cosA+B2.cosAB2+cos(180AB)==2cosA+B2.cosAB22cos2A+B2+1=2cosA+B2(cosAB2cosA+B2)+1==2cos180C2.2sinA2sinB2+1==4sinA2sinB2sinC2+1sinA2=1cosA2=1b2+c2a22bc2==(a+bc)(a+cb)4bc=(pb)(pc)bcΠsinA2=(pb)(pc)(pa)(pc)(pa)(pb)a2b2c2==(pa)(pb)(pc)abc=S2p4R.S=S4R.p=r4RLHS=2R(4×r4R+1)=2r+2R=2(r+R).◼
Commented by Tinkutara last updated on 22/Jun/17
Thanks Sir!
ThanksSir!
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 22/Jun/17
note:  sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)  cos(A/2)=(√((1+cosA)/2))=(√((1+((b^2 +c^2 −a^2 )/(2bc)))/2))=  =(√(((b+c+a)(b+c−a))/(4bc)))=(√((p(p−a))/(bc)))  ⇒Πcos(A/2)=(√((p(p−a)p(p−b)p(p−c))/(a^2 b^2 c^2 )))=  =((p.S)/(abc))=((p.S)/(4R.S))=(p/(4R))  tgA+tgB+tg(180−^((=C)) A−B)=  =tgA+tgB−((tgA+tgB)/(1−tgAtgB))=(tgA+tgB)(1−(1/(1−tgA.tgB)))=  =−tgA.tgB.((tgA+tgB)/(1−tgA.tgB))=−tgA.tgB.(−tgC)=  =tgA.tgB.tgC  ΣsinA=4Πcos(A/2)  ΣcosA=1+4Πsin(A/2)  ΣtgA=ΠtgA
note:sinA+sinB+sinC=4cosA2cosB2cosC2cosA2=1+cosA2=1+b2+c2a22bc2==(b+c+a)(b+ca)4bc=p(pa)bcΠcosA2=p(pa)p(pb)p(pc)a2b2c2==p.Sabc=p.S4R.S=p4RtgA+tgB+tg(180(=C)AB)==tgA+tgBtgA+tgB1tgAtgB=(tgA+tgB)(111tgA.tgB)==tgA.tgB.tgA+tgB1tgA.tgB=tgA.tgB.(tgC)==tgA.tgB.tgCΣsinA=4ΠcosA2ΣcosA=1+4ΠsinA2ΣtgA=ΠtgA

Leave a Reply

Your email address will not be published. Required fields are marked *