Menu Close

In-finding-the-equations-of-the-bisectors-of-the-angles-between-two-lines-a-1-x-b-1-y-c-1-0-and-a-2-x-b-2-y-c-2-0-why-we-observe-a-1-a-2-b-1-b-2-gt-0-or-lt-0-for-obtuse-and-acute-angle-bisectors




Question Number 25971 by Tinkutara last updated on 17/Dec/17
In finding the equations of the  bisectors of the angles between two  lines a_1 x+b_1 y+c_1 =0 and a_2 x+b_2 y+c_2 =0,  why we observe a_1 a_2 +b_1 b_2 >0 or <0  for obtuse and acute angle bisectors?
Infindingtheequationsofthebisectorsoftheanglesbetweentwolinesa1x+b1y+c1=0anda2x+b2y+c2=0,whyweobservea1a2+b1b2>0or<0forobtuseandacuteanglebisectors?
Commented by Tinkutara last updated on 17/Dec/17
Commented by Tinkutara last updated on 17/Dec/17
For example here, why we are  calculating a_1 a_2 +b_1 b_2 ? Why not  a_1 b_1 +a_2 b_2  or something else?
Forexamplehere,whywearecalculatinga1a2+b1b2?Whynota1b1+a2b2orsomethingelse?
Answered by ajfour last updated on 17/Dec/17
to check if ∣θ_2 −θ_1 ∣ is obtuse or  acute  we look for sign of   cos (θ_2 −θ_1 ).  ∣θ_2 −θ_1 ∣ is acute only if  cos (θ_2 −θ_1 ) > 0 ,  and  cos θ_1 =((−b_1 )/( (√(a_1 ^2 +b_1 ^2 ))))  ,sin θ_1 =(a_1 /( (√(a_1 ^2 +b_1 ^2 ))))   cos θ_2 =((−b_2 )/( (√(a_2 ^2 +b_2 ^2 )))) , sin θ_2 =(a_2 /( (√(a_2 ^2 +b_2 ^2 ))))      so  cos (θ_2 −θ_1 ) > 0  ⇒  cos θ_2 cos θ_1 +sin θ_2 sin θ_1  > 0  or    b_1 b_2 +a_1 a_2  > 0 .
tocheckifθ2θ1isobtuseoracutewelookforsignofcos(θ2θ1).θ2θ1isacuteonlyifcos(θ2θ1)>0,andcosθ1=b1a12+b12,sinθ1=a1a12+b12cosθ2=b2a22+b22,sinθ2=a2a22+b22socos(θ2θ1)>0cosθ2cosθ1+sinθ2sinθ1>0orb1b2+a1a2>0.
Commented by Tinkutara last updated on 17/Dec/17
What are θ_1  and θ_2 ?
Whatareθ1andθ2?
Commented by ajfour last updated on 17/Dec/17
Angles  of lines with +ve x axis,  equations of whose bisectors we  seek.
Anglesoflineswith+vexaxis,equationsofwhosebisectorsweseek.
Commented by Tinkutara last updated on 17/Dec/17
Sir can you prove exactly Step 3?

Leave a Reply

Your email address will not be published. Required fields are marked *