Menu Close

In-Matrices-Is-A-1-B-B-A-1-




Question Number 41332 by rahul 19 last updated on 05/Aug/18
In Matrices,   Is (A^(−1) )B = B(A^(−1) ) ?
$$\mathrm{In}\:\mathrm{Matrices},\: \\ $$$$\mathrm{Is}\:\left(\mathrm{A}^{−\mathrm{1}} \right)\mathrm{B}\:=\:\mathrm{B}\left(\mathrm{A}^{−\mathrm{1}} \right)\:? \\ $$
Commented by rahul 19 last updated on 06/Aug/18
ok prof .
$$\mathrm{ok}\:\mathrm{prof}\:. \\ $$
Commented by candre last updated on 06/Aug/18
 determinant ((1),(2)) determinant ((1,2))= determinant ((1),(2))   determinant ((1,2)) determinant ((1),(2))= determinant ((3))  also AB existing don′t even imply BA exist  so, in general AB≠BA  But it not necessary mean that there no values  such AB=BA, for squares matrizes  IA=AI  where I is indenty matriz
$$\begin{vmatrix}{\mathrm{1}}\\{\mathrm{2}}\end{vmatrix}\begin{vmatrix}{\mathrm{1}}&{\mathrm{2}}\end{vmatrix}=\begin{vmatrix}{\mathrm{1}}\\{\mathrm{2}}\end{vmatrix} \\ $$$$\begin{vmatrix}{\mathrm{1}}&{\mathrm{2}}\end{vmatrix}\begin{vmatrix}{\mathrm{1}}\\{\mathrm{2}}\end{vmatrix}=\begin{vmatrix}{\mathrm{3}}\end{vmatrix} \\ $$$$\mathrm{also}\:\mathrm{AB}\:{existing}\:{don}'{t}\:{even}\:{imply}\:{BA}\:{exist} \\ $$$$\mathrm{so},\:\mathrm{in}\:\mathrm{general}\:\mathrm{A}{B}\neq{BA} \\ $$$${But}\:{it}\:{not}\:{necessary}\:{mean}\:{that}\:{there}\:{no}\:{values} \\ $$$${such}\:{AB}={BA},\:{for}\:{squares}\:{matrizes} \\ $$$${IA}={AI} \\ $$$${where}\:{I}\:{is}\:{indenty}\:{matriz} \\ $$
Commented by maxmathsup by imad last updated on 05/Aug/18
generally  two matrice dont commute means A.B≠B.A so  genarally A^(−1) .B≠B.A^(−1)
$${generally}\:\:{two}\:{matrice}\:{dont}\:{commute}\:{means}\:{A}.{B}\neq{B}.{A}\:{so} \\ $$$${genarally}\:{A}^{−\mathrm{1}} .{B}\neq{B}.{A}^{−\mathrm{1}} \\ $$
Answered by candre last updated on 05/Aug/18
no, matriz multiplication don′t commute in general.
$$\mathrm{no},\:\mathrm{matriz}\:\mathrm{multiplication}\:\mathrm{don}'\mathrm{t}\:\mathrm{commute}\:\mathrm{in}\:\mathrm{general}. \\ $$
Commented by rahul 19 last updated on 05/Aug/18
ok sir.
$$\mathrm{ok}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *