Menu Close

In-Matrices-Is-A-1-B-B-A-1-




Question Number 41332 by rahul 19 last updated on 05/Aug/18
In Matrices,   Is (A^(−1) )B = B(A^(−1) ) ?
InMatrices,Is(A1)B=B(A1)?
Commented by rahul 19 last updated on 06/Aug/18
ok prof .
okprof.
Commented by candre last updated on 06/Aug/18
 determinant ((1),(2)) determinant ((1,2))= determinant ((1),(2))   determinant ((1,2)) determinant ((1),(2))= determinant ((3))  also AB existing don′t even imply BA exist  so, in general AB≠BA  But it not necessary mean that there no values  such AB=BA, for squares matrizes  IA=AI  where I is indenty matriz
|12||12|=|12||12||12|=|3|alsoABexistingdontevenimplyBAexistso,ingeneralABBAButitnotnecessarymeanthattherenovaluessuchAB=BA,forsquaresmatrizesIA=AIwhereIisindentymatriz
Commented by maxmathsup by imad last updated on 05/Aug/18
generally  two matrice dont commute means A.B≠B.A so  genarally A^(−1) .B≠B.A^(−1)
generallytwomatricedontcommutemeansA.BB.AsogenarallyA1.BB.A1
Answered by candre last updated on 05/Aug/18
no, matriz multiplication don′t commute in general.
no,matrizmultiplicationdontcommuteingeneral.
Commented by rahul 19 last updated on 05/Aug/18
ok sir.
oksir.

Leave a Reply

Your email address will not be published. Required fields are marked *