Menu Close

in-question-34992-this-had-to-be-solved-t-4-8t-3-2t-2-8t-1-0-here-another-concept-worked-I-tried-some-t-1-a-b-c-d-t-2-a-b-c-d-t-3-a-b-c-d-t-3-a-b-c-d-t-t-1-t-t-2-t-t-3-t-t-4-0-leads




Question Number 36219 by MJS last updated on 30/May/18
in question 34992 this had to be solved:  t^4 +8t^3 +2t^2 −8t+1=0  here another concept worked (I tried some)  t_1 =a+b+c+d  t_2 =a+b−c−d  t_3 =a−b+c−d  t_3 =a−b−c+d  (t−t_1 )(t−t_2 )(t−t_3 )(t−t_4 )=0  leads to  t^4 −4at^3 +2(3a^2 −b^2 −c^2 −d^2 )t^2 +       +4(a(−a^2 +b^2 +c^2 +d^2 )−2bcd)t+       +a^4 +b^4 +c^4 +d^4 −2(a^2 (b^2 +c^2 +d^2 )+b^2 (c^2 +d^2 )+c^2 d^2 )    1. −4a=8  2. 2(3a^2 −b^2 −c^2 −d^2 )=2  3. 4(a(−a^2 +b^2 +c^2 +d^2 )−2bcd)=−8  4. a^4 +b^4 +c^4 +d^4 −2(a^2 (b^2 +c^2 +d^2 )+b^2 (c^2 +d^2 )+c^2 d^2 )=1    1. a=−2  2. b^2 +c^2 +d^2 =11  3. b^2 +c^2 +d^2 +bcd=5  4. ...  3. −2. bcd=−6    now I tried by chance if there are easy real solutions  b^2 =p, c^2 =q, d^2 =r, 0≤p≤q≤r  p+q+r=11  this leads to  p=2, q=3, p=6  ∣b∣=(√2), ∣c∣=(√3), ∣d∣=(√6) with one or three out  of a, b, c negative because of bcd=−6  because of the nature of t_1 , t_2 , t_3 , t_4  these  lead to the same solutions  I took b=−(√2), c=−(√3), d=−(√6)  t_1 =−2−(√2)−(√3)−(√6)  t_2 =−2−(√2)+(√3)+(√6)  t_3 =−2+(√2)−(√3)+(√6)  t_4 =−2+(√2)+(√3)−(√6)
inquestion34992thishadtobesolved:t4+8t3+2t28t+1=0hereanotherconceptworked(Itriedsome)t1=a+b+c+dt2=a+bcdt3=ab+cdt3=abc+d(tt1)(tt2)(tt3)(tt4)=0leadstot44at3+2(3a2b2c2d2)t2++4(a(a2+b2+c2+d2)2bcd)t++a4+b4+c4+d42(a2(b2+c2+d2)+b2(c2+d2)+c2d2)1.4a=82.2(3a2b2c2d2)=23.4(a(a2+b2+c2+d2)2bcd)=84.a4+b4+c4+d42(a2(b2+c2+d2)+b2(c2+d2)+c2d2)=11.a=22.b2+c2+d2=113.b2+c2+d2+bcd=54.3.2.bcd=6nowItriedbychanceifthereareeasyrealsolutionsb2=p,c2=q,d2=r,0pqrp+q+r=11thisleadstop=2,q=3,p=6b∣=2,c∣=3,d∣=6withoneorthreeoutofa,b,cnegativebecauseofbcd=6becauseofthenatureoft1,t2,t3,t4theseleadtothesamesolutionsItookb=2,c=3,d=6t1=2236t2=22+3+6t3=2+23+6t4=2+2+36
Commented by Rasheed.Sindhi last updated on 30/May/18
Creative work , I think! �� �� ✌
Commented by tanmay.chaudhury50@gmail.com last updated on 31/May/18
t^4 +8t^3 +2t^2 −8t+1=0  t^2 +8t+2−(8/t)+(1/t^2 )=0  t^2 +(1/t^2 )+8(t−(1/t))+2=0  (t−(1/t))^2 +2+8(t−(1/t))+2=0  k=t−(1/t)  k^2 +8k+4=0  k=((−8±(√(64−16)) )/2)  =((−8±4(√3) )/2)  =−4±2(√3)   k=−4+2(√3)  and −4−2(√3)    now  t−(1/t)=k  t^2 −1=tk  t^2 −tk−1=0  t=((k±(√(k^2 +4)) )/2)  =((k+(√(k^2 +4)) )/2) and ((k−(√(k^2 +4)) )/2)  now put value of k=−4+2(√3)    t=((−4+2(√3) ±(√(16−16(√3) +12+4)))/2)  t=((−4+2(√3) ±(√(32−16(√3)  )))/2)  t=−2+(√3) ±(√(8−4(√3) ))  t=−2+(√3) +(√(8−4(√3) ))  and−2+(√3)  −(√(8−4(√3)  ))  now put k=−4−2(√3)  you will get two value of  t so total 2+2=4 roots of t found
t4+8t3+2t28t+1=0t2+8t+28t+1t2=0t2+1t2+8(t1t)+2=0(t1t)2+2+8(t1t)+2=0k=t1tk2+8k+4=0k=8±64162=8±432=4±23k=4+23and423nowt1t=kt21=tkt2tk1=0t=k±k2+42=k+k2+42andkk2+42nowputvalueofk=4+23t=4+23±16163+12+42t=4+23±321632t=2+3±843t=2+3+843and2+3843nowputk=423youwillgettwovalueoftsototal2+2=4rootsoftfound

Leave a Reply

Your email address will not be published. Required fields are marked *