Menu Close

In-rectangle-ABCD-AB-8-BC-20-P-is-a-point-on-AD-so-that-BPC-90-If-r-1-r-2-r-3-are-the-radii-of-the-incircles-of-APB-BPC-and-CPD-find-r-1-r-2-r-3-




Question Number 20131 by NECC last updated on 22/Aug/17
In rectangle ABCD,AB=8,  BC=20.P is a point on AD so  that ∠BPC=90°.If r_1 ,r_2 ,r_3  are the  radii of the incircles of APB,  BPC, and CPD. find r_1 +r_2 +r_3
InrectangleABCD,AB=8,BC=20.PisapointonADsothatBPC=90°.Ifr1,r2,r3aretheradiioftheincirclesofAPB,BPC,andCPD.findr1+r2+r3
Commented by ajfour last updated on 22/Aug/17
Commented by NECC last updated on 22/Aug/17
please help
pleasehelp
Commented by ajfour last updated on 22/Aug/17
r_1 +r_2 +r_3 =r_1 (1+(√5)+2)=(3+(√5))r_1       (as shall be proved below)  r_1 +r_1 cot θ=AP   (from figure)  OP=((BC)/2)=10  ; PQ=AB=8  OQ=(√(OP^2 −PQ^2 )) =6  BQ=AP=OB−OQ=10−6=4  BP=(√(PQ^2 +BQ^2 )) =(√(64+16)) =4(√5)   CD=AB=8  tan 2θ=((PQ)/(BQ))=(8/4)=2  ((2tan θ)/(1−tan^2 θ))=2  ⇒   tan^2 θ+tan θ−1=0  ⇒ tan θ=(((√5)−1)/2)     r_1 (1+cot θ)=AP=4    r_1 (1+(2/( (√5)−1)))=4   ⇒   r_1 =((4((√5)−1))/( (√5)+1))    ⇒    r_1 =6−2(√5) .  The three triangles are similar, so  their inradii are in the ratio of  their sides;   r_1 : r_2 : r_3  =AP: BP: CD                       = 4 : 4(√5) : 8  = 1 : (√5) : 2   so, r_1 +r_2 +r_3 =r_1 (1+(√5)+2)          =(6−2(√5))(3+(√5))           =2(3−(√5))(3+(√5))          =2(9−5) =8 .
r1+r2+r3=r1(1+5+2)=(3+5)r1(asshallbeprovedbelow)r1+r1cotθ=AP(fromfigure)OP=BC2=10;PQ=AB=8OQ=OP2PQ2=6BQ=AP=OBOQ=106=4BP=PQ2+BQ2=64+16=45CD=AB=8tan2θ=PQBQ=84=22tanθ1tan2θ=2tan2θ+tanθ1=0tanθ=512r1(1+cotθ)=AP=4r1(1+251)=4r1=4(51)5+1r1=625.Thethreetrianglesaresimilar,sotheirinradiiareintheratiooftheirsides;r1:r2:r3=AP:BP:CD=4:45:8=1:5:2so,r1+r2+r3=r1(1+5+2)=(625)(3+5)=2(35)(3+5)=2(95)=8.
Commented by NECC last updated on 22/Aug/17
wow.... you′re amazing sir.   It feels good to be here. I′ll learn  alot from you all.Gracias.....
wow.youreamazingsir.Itfeelsgoodtobehere.Illlearnalotfromyouall.Gracias..
Answered by Tinkutara last updated on 22/Aug/17
Commented by Tinkutara last updated on 22/Aug/17
In a right triangle where c is hypotenuse,  radius of incircle = (1/2)(a + b − c)  So r_1  = (1/2)(x + 8 − a)  r_2  = (1/2)(a + b − 20)  r_3  = (1/2)(y + 8 − 20)  r_1  + r_2  + r_3  = (1/2)(2×8) = 8
Inarighttrianglewherecishypotenuse,radiusofincircle=12(a+bc)Sor1=12(x+8a)r2=12(a+b20)r3=12(y+820)r1+r2+r3=12(2×8)=8
Commented by ajfour last updated on 22/Aug/17
thanks for the confirmation.
thanksfortheconfirmation.
Commented by NECC last updated on 22/Aug/17
im most grateful sir
immostgratefulsir

Leave a Reply

Your email address will not be published. Required fields are marked *