Menu Close

In-the-a-sport-camp-65-children-know-playing-the-football-70-in-voleyball-75-in-basketball-What-is-least-number-of-children-who-know-playing-all-above-three-sport-games-Answer-10-




Question Number 104972 by 1549442205PVT last updated on 25/Jul/20
  In the a  sport camp, 65% children know  playing the football,70%−in voleyball,75%−in  basketball.What is least number of children who  know playing all above three sport games?  (Answer 10%)
$$ \\ $$$$\mathrm{In}\:\mathrm{the}\:\mathrm{a}\:\:\mathrm{sport}\:\mathrm{camp},\:\mathrm{65\%}\:\mathrm{children}\:\mathrm{know} \\ $$$$\mathrm{playing}\:\mathrm{the}\:\mathrm{football},\mathrm{70\%}−\mathrm{in}\:\mathrm{voleyball},\mathrm{75\%}−\mathrm{in} \\ $$$$\mathrm{basketball}.\mathrm{What}\:\mathrm{is}\:\mathrm{least}\:\mathrm{number}\:\mathrm{of}\:\mathrm{children}\:\mathrm{who} \\ $$$$\mathrm{know}\:\mathrm{playing}\:\mathrm{all}\:\mathrm{above}\:\mathrm{three}\:\mathrm{sport}\:\mathrm{games}? \\ $$$$\left(\mathrm{Answer}\:\mathrm{10\%}\right) \\ $$
Answered by mr W last updated on 25/Jul/20
simple way without using set theory:    N_F =children playing football only  N_(F,V) =children playing both football and volleyball  N_(F,V,B) =children playing all three sports  N_F +N_(F,V) +N_(F,B) +N_(F,V,B) =65   ...(i)  N_V +N_(F,V) +N_(V,B) +N_(F,V,B) =70   ...(ii)  N_B +N_(F,B) +N_(V,B) +N_(F,V,B) =75   ...(iii)  i+ii+iii:  N_(F,V,B) +2(N_F +N_V +N_B +N_(F,V) +N_(F,B) +N_(V,B) +N_(F,V,B) )−(N_F +N_V +N_B )=210  N_(F,V,B) +2×100−(N_F +N_V +N_B )=210  N_(F,V,B) =10+(N_F +N_V +N_B )  N_(F,V,B) ≥10  i.e. at least 10% children know  playing all three sport games.
$${simple}\:{way}\:{without}\:{using}\:{set}\:{theory}: \\ $$$$ \\ $$$${N}_{{F}} ={children}\:{playing}\:{football}\:{only} \\ $$$${N}_{{F},{V}} ={children}\:{playing}\:{both}\:{football}\:{and}\:{volleyball} \\ $$$${N}_{{F},{V},{B}} ={children}\:{playing}\:{all}\:{three}\:{sports} \\ $$$${N}_{{F}} +{N}_{{F},{V}} +{N}_{{F},{B}} +{N}_{{F},{V},{B}} =\mathrm{65}\:\:\:…\left({i}\right) \\ $$$${N}_{{V}} +{N}_{{F},{V}} +{N}_{{V},{B}} +{N}_{{F},{V},{B}} =\mathrm{70}\:\:\:…\left({ii}\right) \\ $$$${N}_{{B}} +{N}_{{F},{B}} +{N}_{{V},{B}} +{N}_{{F},{V},{B}} =\mathrm{75}\:\:\:…\left({iii}\right) \\ $$$${i}+{ii}+{iii}: \\ $$$${N}_{{F},{V},{B}} +\mathrm{2}\left({N}_{{F}} +{N}_{{V}} +{N}_{{B}} +{N}_{{F},{V}} +{N}_{{F},{B}} +{N}_{{V},{B}} +{N}_{{F},{V},{B}} \right)−\left({N}_{{F}} +{N}_{{V}} +{N}_{{B}} \right)=\mathrm{210} \\ $$$${N}_{{F},{V},{B}} +\mathrm{2}×\mathrm{100}−\left({N}_{{F}} +{N}_{{V}} +{N}_{{B}} \right)=\mathrm{210} \\ $$$${N}_{{F},{V},{B}} =\mathrm{10}+\left({N}_{{F}} +{N}_{{V}} +{N}_{{B}} \right) \\ $$$${N}_{{F},{V},{B}} \geqslant\mathrm{10} \\ $$$${i}.{e}.\:{at}\:{least}\:\mathrm{10\%}\:{children}\:{know} \\ $$$${playing}\:{all}\:{three}\:{sport}\:{games}. \\ $$
Commented by 1549442205PVT last updated on 25/Jul/20
Great!Thank you Sir!
$$\mathrm{Great}!\mathrm{Thank}\:\mathrm{you}\:\mathrm{Sir}! \\ $$
Commented by Rasheed.Sindhi last updated on 25/Jul/20
Superb! Elegant! MrW Sir!
$$\mathcal{S}{uperb}!\:\mathcal{E}{legant}!\:\mathcal{M}{rW}\:\mathcal{S}{ir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *