Menu Close

In-the-equation-ax-2-bx-c-0-One-root-is-the-square-of-the-other-Show-that-c-a-b-3-a-c-b-3-




Question Number 52572 by Necxx last updated on 09/Jan/19
In the equation ax^2 +bx+c=0.One  root is the square of the other.  Show that c(a−b)^3 =a(c−b)^3
Intheequationax2+bx+c=0.Onerootisthesquareoftheother.Showthatc(ab)3=a(cb)3
Answered by math1967 last updated on 10/Jan/19
let one root=α∴ other=α^2   ∴α^2 +α=−(b/a) α^3 =(c/a)  Now ((c(a−b)^3 )/(a(c−b)^3 ))=(c/a)×((((a−b)^3 )/a^3 )/(((c−b)^3 )/a^3 ))  =(c/a)×(((1−(b/a))^3 )/(((c/a)−(b/a))^3 ))=α^3 ×(((1+α^2 +α)^3 )/((α^3 +α^2 +α)^3 )) ★  =α^3 ×(((1+α^2 +α)^3 )/(α^3 (1+α^2 +α)^3 ))=1  ∴((c(a−b)^3 )/(a(c−b)^3 ))=1 ∴c(a−b)^3 =a(c−b)^3   ★α^3 =(c/a)  α^2 +α=−(b/a)
letoneroot=αother=α2α2+α=baα3=caNowc(ab)3a(cb)3=ca×(ab)3a3(cb)3a3=ca×(1ba)3(caba)3=α3×(1+α2+α)3(α3+α2+α)3=α3×(1+α2+α)3α3(1+α2+α)3=1c(ab)3a(cb)3=1c(ab)3=a(cb)3α3=caα2+α=ba
Commented by Necxx last updated on 10/Jan/19
thank you sir.Its clear.
thankyousir.Itsclear.

Leave a Reply

Your email address will not be published. Required fields are marked *