Menu Close

In-the-expansion-of-1-x-20-if-the-coefficient-of-x-r-is-twice-the-coefficient-of-x-r-1-what-the-value-of-the-coefficient-




Question Number 103826 by bobhans last updated on 17/Jul/20
In the expansion of (1+x)^(20)  if the  coefficient of x^r  is twice the coefficient  of x^(r−1) , what the value of the  coefficient?
Intheexpansionof(1+x)20ifthecoefficientofxristwicethecoefficientofxr1,whatthevalueofthecoefficient?
Answered by bramlex last updated on 17/Jul/20
(1+x)^(20)  = Σ_(r = 0) ^(20) C _r^(20)  1^r .x^(20−r)   coefficient of x^r  is  (((20)),((  r)) ) and coefficient of x^(r−1)  is  (((   20)),(( r−1)) )   so condition in equation    (((20)),((  r)) ) = 2 (((    20)),((  r−1)) )   note  ((n),(r) ) = ((n−r+1)/r)  (((  n)),((r−1)) )  so your equation reduces to  ((20−r+1)/r) = 2 ⇒ r = 7. therefore  the value of coefficient ((20!)/(7!.13!))  = ((20.19.18.17.16.15.14)/(7.6.5.4.3.2.1))
(1+x)20=20r=0Cr201r.x20rcoefficientofxris(20r)andcoefficientofxr1is(20r1)soconditioninequation(20r)=2(20r1)note(nr)=nr+1r(nr1)soyourequationreducesto20r+1r=2r=7.thereforethevalueofcoefficient20!7!.13!=20.19.18.17.16.15.147.6.5.4.3.2.1

Leave a Reply

Your email address will not be published. Required fields are marked *