Menu Close

In-the-figure-ABCD-is-an-square-and-BM-MC-If-the-area-of-PCD-14u-What-is-the-value-of-1-Area-of-ABC-2-Area-of-ABMP-3-The-area-of-ABCD-




Question Number 175045 by 2kdw last updated on 17/Aug/22
In the figure ABCD is an square and  BM=MC. If the area of PCD=14u.   What is the value of:    (1) Area of ABC;  (2) Area of  ABMP;  (3) The area of ABCD
$${In}\:{the}\:{figure}\:{ABCD}\:{is}\:{an}\:{square}\:{and} \\ $$$${BM}={MC}.\:{If}\:{the}\:{area}\:{of}\:{PCD}=\mathrm{14}{u}.\: \\ $$$${What}\:{is}\:{the}\:{value}\:{of}: \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\:{Area}\:{of}\:{ABC}; \\ $$$$\left(\mathrm{2}\right)\:{Area}\:{of}\:\:{ABMP}; \\ $$$$\left(\mathrm{3}\right)\:{The}\:{area}\:{of}\:{ABCD} \\ $$$$ \\ $$
Commented by 2kdw last updated on 17/Aug/22
Commented by mr W last updated on 17/Aug/22
Commented by mr W last updated on 17/Aug/22
((AP)/(PC))=((AD)/(MC))=2  ⇒ΔADP=2×14=28  ((PM)/(DP))=((CM)/(AD))=(1/2)  ⇒ΔPMC=((14)/2)=7  14+28−7=35
$$\frac{{AP}}{{PC}}=\frac{{AD}}{{MC}}=\mathrm{2} \\ $$$$\Rightarrow\Delta{ADP}=\mathrm{2}×\mathrm{14}=\mathrm{28} \\ $$$$\frac{{PM}}{{DP}}=\frac{{CM}}{{AD}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\Delta{PMC}=\frac{\mathrm{14}}{\mathrm{2}}=\mathrm{7} \\ $$$$\mathrm{14}+\mathrm{28}−\mathrm{7}=\mathrm{35} \\ $$
Commented by 2kdw last updated on 17/Aug/22
  Thank you, Sir.
$$ \\ $$$${Thank}\:{you},\:{Sir}. \\ $$$$ \\ $$
Commented by Tawa11 last updated on 17/Aug/22
Great sir
$$\mathrm{Great}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *