Menu Close

In-the-figure-shown-mass-m-is-placed-on-the-inclined-surface-of-a-wedge-of-mass-M-All-the-surfaces-are-smooth-Find-the-acceleration-of-the-wedge-




Question Number 20777 by Tinkutara last updated on 02/Sep/17
In the figure shown, mass ′m′ is  placed on the inclined surface of a  wedge of mass M. All the surfaces  are smooth. Find the acceleration of  the wedge.
Inthefigureshown,massmisplacedontheinclinedsurfaceofawedgeofmassM.Allthesurfacesaresmooth.Findtheaccelerationofthewedge.
Commented by Tinkutara last updated on 02/Sep/17
Commented by ajfour last updated on 02/Sep/17
Nsin θ=MA   ..(i)  mgcos θ−N=mAsin θ  or  using (i)  mgcos θsin θ−MA=mAsin^2 θ    ⇒   A=((mgsin 𝛉cos 𝛉)/(M+msin^2 𝛉)) .
Nsinθ=MA..(i)mgcosθN=mAsinθorusing(i)mgcosθsinθMA=mAsin2θ\boldsymbolA=\boldsymbolmgsin\boldsymbolθcos\boldsymbolθ\boldsymbolM+\boldsymbolmsin2\boldsymbolθ.
Commented by Tinkutara last updated on 02/Sep/17
Thank you very much Sir!
ThankyouverymuchSir!
Commented by mrW1 last updated on 03/Sep/17
what is the result if the friction coe. of all  surfaces is μ?
whatistheresultifthefrictioncoe.ofallsurfacesisμ?
Commented by ajfour last updated on 03/Sep/17
Commented by ajfour last updated on 03/Sep/17
mgcos θ−N=mAsin θ             ...(i)  Nsin θ−μNcos θ−μR=MA  ..(ii)  R=Mg+Ncos θ+μNsin θ    ...(iii)  solving for A we get,  A=(((1−μ^2 )mgcos θsin θ−2μmgcos^2 θ−μMg)/(M+(1−μ^2 )msin^2 θ)) .
mgcosθN=mAsinθ(i)NsinθμNcosθμR=MA..(ii)R=Mg+Ncosθ+μNsinθ(iii)solvingforAweget,\boldsymbolA=(1μ2)mgcosθsinθ2μmgcos2θμMgM+(1μ2)msin2θ.

Leave a Reply

Your email address will not be published. Required fields are marked *