Menu Close

In-the-following-cases-find-out-the-acceleration-of-the-wedge-and-the-block-if-an-external-force-F-is-applied-as-shown-Both-pulleys-and-strings-are-ideal-




Question Number 20035 by Tinkutara last updated on 20/Aug/17
In the following cases, find out the  acceleration of the wedge and the block,  if an external force F is applied as  shown. (Both pulleys and strings are  ideal)
$$\mathrm{In}\:\mathrm{the}\:\mathrm{following}\:\mathrm{cases},\:\mathrm{find}\:\mathrm{out}\:\mathrm{the} \\ $$$$\mathrm{acceleration}\:\mathrm{of}\:\mathrm{the}\:\mathrm{wedge}\:\mathrm{and}\:\mathrm{the}\:\mathrm{block}, \\ $$$$\mathrm{if}\:\mathrm{an}\:\mathrm{external}\:\mathrm{force}\:{F}\:\mathrm{is}\:\mathrm{applied}\:\mathrm{as} \\ $$$$\mathrm{shown}.\:\left(\mathrm{Both}\:\mathrm{pulleys}\:\mathrm{and}\:\mathrm{strings}\:\mathrm{are}\right. \\ $$$$\left.\mathrm{ideal}\right) \\ $$
Commented by Tinkutara last updated on 20/Aug/17
Answered by ajfour last updated on 21/Aug/17
let A be acceleration of wedge,  and a acceleeation of block.  Tension in (light) string =F  Case II:       F−Fcos θ=MA  ⇒     A=((F(1−cos θ))/M)   −F=ma   ⇒  a=−(F/m)     ∣a∣=(F/m)  towards left for all cases.  Case I:    θ=0°  so   A=0  Case III:  θ=90°  so  A=(F/M) .
$${let}\:\boldsymbol{{A}}\:{be}\:{acceleration}\:{of}\:{wedge}, \\ $$$${and}\:\boldsymbol{{a}}\:{acceleeation}\:{of}\:{block}. \\ $$$${Tension}\:{in}\:\left({light}\right)\:{string}\:={F} \\ $$$${Case}\:{II}: \\ $$$$\:\:\:\:\:{F}−{F}\mathrm{cos}\:\theta={MA} \\ $$$$\Rightarrow\:\:\:\:\:{A}=\frac{{F}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}{{M}} \\ $$$$\:−{F}={ma}\:\:\:\Rightarrow\:\:{a}=−\frac{{F}}{{m}}\:\: \\ $$$$\:\mid{a}\mid=\frac{{F}}{{m}}\:\:{towards}\:{left}\:{for}\:{all}\:{cases}. \\ $$$${Case}\:{I}:\:\:\:\:\theta=\mathrm{0}°\:\:{so}\:\:\:{A}=\mathrm{0} \\ $$$${Case}\:{III}:\:\:\theta=\mathrm{90}°\:\:{so}\:\:{A}=\frac{{F}}{{M}}\:. \\ $$
Commented by Tinkutara last updated on 21/Aug/17
Thank you very much Sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *