Menu Close

In-triangle-ABC-with-angles-correspondently-Euler-s-line-interescts-BC-at-point-P-Ite-s-put-is-angle-between-Euler-s-line-and-BC-BPH-Then-the-following-is-true-tan-2-c




Question Number 180273 by Shrinava last updated on 09/Nov/22
In triangle  ABC  with angles  α , β , γ  correspondently , Euler′s line interescts  BC  at point  P. Ite′s put  δ  is angle  between Euler′s line and  BC (∠BPH).  Then the following is true  tan δ = ((2 cos β cos γ − cos α)/(sin (β − γ)))
$$\mathrm{In}\:\mathrm{triangle}\:\:\mathrm{ABC}\:\:\mathrm{with}\:\mathrm{angles}\:\:\alpha\:,\:\beta\:,\:\gamma \\ $$$$\mathrm{correspondently}\:,\:\mathrm{Euler}'\mathrm{s}\:\mathrm{line}\:\mathrm{interescts} \\ $$$$\mathrm{BC}\:\:\mathrm{at}\:\mathrm{point}\:\:\mathrm{P}.\:\mathrm{Ite}'\mathrm{s}\:\mathrm{put}\:\:\delta\:\:\mathrm{is}\:\mathrm{angle} \\ $$$$\mathrm{between}\:\mathrm{Euler}'\mathrm{s}\:\mathrm{line}\:\mathrm{and}\:\:\mathrm{BC}\:\left(\angle\mathrm{BPH}\right). \\ $$$$\mathrm{Then}\:\mathrm{the}\:\mathrm{following}\:\mathrm{is}\:\mathrm{true} \\ $$$$\mathrm{tan}\:\delta\:=\:\frac{\mathrm{2}\:\mathrm{cos}\:\beta\:\mathrm{cos}\:\gamma\:−\:\mathrm{cos}\:\alpha}{\mathrm{sin}\:\left(\beta\:−\:\gamma\right)} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *