Menu Close

In-x-2-e-cos2-x-dx-




Question Number 164590 by Zaynal last updated on 19/Jan/22
∫ ((In(x^2 .e^(cos2) ))/x) dx
$$\int\:\frac{\mathrm{In}\left(\mathrm{x}^{\mathrm{2}} .\boldsymbol{{e}}^{\boldsymbol{{cos}}\mathrm{2}} \right)}{\boldsymbol{\mathrm{x}}}\:\boldsymbol{\mathrm{dx}} \\ $$
Answered by mahdipoor last updated on 19/Jan/22
=∫((cos2+2lnx)/x)dx=lnx.cos2+ln^2 x+C
$$=\int\frac{{cos}\mathrm{2}+\mathrm{2}{lnx}}{{x}}{dx}={lnx}.{cos}\mathrm{2}+{ln}^{\mathrm{2}} {x}+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *