Menu Close

ind-the-value-of-f-a-0-dx-x-2-a-2-x-2-dx-witha-gt-0-2-calculate-f-a-




Question Number 37902 by math khazana by abdo last updated on 19/Jun/18
ind the value of f(a)  =∫_0 ^(+∞)    (dx/(x^2  +(√(a^2  +x^2 )))) dx  witha>0  2)calculate f^′ (a) .
indthevalueoff(a)=0+dxx2+a2+x2dxwitha>02)calculatef(a).
Commented by prof Abdo imad last updated on 19/Jun/18
changement x=a tan t give  f(a) = ∫_0 ^(π/2)      (1/(a^2 tan^2 t  + a cost)) a(1+tan^2 t)dt  = ∫_0 ^(π/2)     ((1+tan^2 t)/(a tant +cost)) dt  chang. tan((t/2))=u  give  f(a) = ∫_0 ^1     ((1+( ((2u)/(1−u^2 )))^2 )/(a ((2u)/(1−u^2 ))  +((1−u^2 )/(1+u^2 ))))  ((2du)/(1+u^2 ))  = 2 ∫_0 ^1        (((1−u^2 )^2  +4u^2 )/((1+u^2 )(1−u^2 )^2 { ((2au)/(1−u^2 )) +((1−u^2 )/(1+u^2 ))}))du  = 2 ∫_0 ^1      (((1−u^2 )^2  +4u^2 )/(2au(1−u^4 ) +(1−u^2 )^3 )) du  =2 ∫_0 ^1    (((1+u^2 )^2 )/(2au −2au^5   −(u^(6 )  +3u^4  −3u^2 −1)))du  =2∫_0 ^1      ((u^4  +2u^(2 )  +1)/(−u^6  −2au^5  +3u^2  +2au +1))du  =−2 ∫_0 ^1     ((u^4  +2u^2  +1)/(u^6  +2au^5  −3u^2  −2au −1))du...be  continued...
changementx=atantgivef(a)=0π21a2tan2t+acosta(1+tan2t)dt=0π21+tan2tatant+costdtchang.tan(t2)=ugivef(a)=011+(2u1u2)2a2u1u2+1u21+u22du1+u2=201(1u2)2+4u2(1+u2)(1u2)2{2au1u2+1u21+u2}du=201(1u2)2+4u22au(1u4)+(1u2)3du=201(1+u2)22au2au5(u6+3u43u21)du=201u4+2u2+1u62au5+3u2+2au+1du=201u4+2u2+1u6+2au53u22au1dubecontinued
Answered by ajfour last updated on 19/Jun/18
let x=atan θ    f(a)=∫_0 ^(  π/2) ((sec^2 θdθ)/(atan^2 θ+sec θ))       =∫_0 ^(  π/2) (dθ/(asin^2 θ+cos θ))      let tan (θ/2)=t       =∫_0 ^(  1) (((2dt)/(1+t^2 ))/(a(((2t)/(1+t^2 )))^2 +((1−t^2 )/(1+t^2 ))))      = ∫_0 ^(  1) ((2(1+t^2 )dt)/(4at^2 +1−t^4 ))  let   t^4 −4at^2 +1=0  ⇒    t^2 =((4a±(√(16a^2 −4)))/2)      say   α, β  = 2a±(√(4a^2 −1))  f(a)=−∫_0 ^(  1) ((1+t^2 )/((t^2 −α)(t^2 −β)))dt     =−((α+1)/(α−β))∫_0 ^(  1) (dt/(t^2 −α))+((1+β)/(α−β))∫_0 ^(  1) (dt/(t^2 −β))    =−((α+1)/(α−β))×(1/(2(√α)))ln ∣((t−(√α))/(t+(√α)))∣_0 ^1                     +((1+β)/(α−β))×(1/(2(√β)))ln ∣((t−(√β))/(t+(√β)))∣_0 ^1        not satisfactory, i guess !
letx=atanθf(a)=0π/2sec2θdθatan2θ+secθ=0π/2dθasin2θ+cosθlettanθ2=t=012dt1+t2a(2t1+t2)2+1t21+t2=012(1+t2)dt4at2+1t4lett44at2+1=0t2=4a±16a242sayα,β=2a±4a21f(a)=011+t2(t2α)(t2β)dt=α+1αβ01dtt2α+1+βαβ01dtt2β=α+1αβ×12αlntαt+α01+1+βαβ×12βlntβt+β01notsatisfactory,iguess!
Commented by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18
∫_0 ^1 ((2((1/t^2 )+1)dt)/(4a+(1/t^2 )−t^2 ))  ∫_0 ^1 ((2d(t−(1/t)))/(4a−(t−(1/t))(t+(1/t))))  2∫_0 ^1 ((d(t−(1/t)))/(4a−(t−(1/t))(√((t−(1/t))^2 +4))))  2∫_(−∞) ^0 (dk/(4a−k(√(k^2 +4))))  contd
012(1t2+1)dt4a+1t2t2012d(t1t)4a(t1t)(t+1t)201d(t1t)4a(t1t)(t1t)2+420dk4akk2+4contd
Answered by MJS last updated on 19/Jun/18
this is the method:    ∫(dx/(x^2 +(√(x^2 +a^2 ))))=∫(x^2 /(x^4 −x^2 −a^2 ))dx−∫((√(x^2 +a^2 ))/(x^4 −x^2 −a^2 ))dx       ∫(x^2 /(x^4 −x^2 −a^2 ))dx=       =Σ_(i=1) ^4 ∫(N_i /(x−r_i ))dx=Σ_(i=1) ^4 N_i ln∣x−r_i ∣         ∫((√(x^2 +a^2 ))/(x^4 −x^2 −a^2 ))dx=            [t=(x/( (√(x^2 +a^2 )))) → dx=(dt/a^2 )(√((x^2 +a^2 )^3 ))]       =(1/a^2 )∫(dt/(t^4 +(1/a^2 )t^2 −(1/a^2 )))=       =(N_5 /a^2 )(∫(dt/(t−r_5 ))−∫(dt/(t+r_5 )))+(N_6 /a^2 )∫(dt/(t^2 +r_6 ))=            [r_6 >0]       =(N_5 /a^2 )ln∣((t−r_5 )/(t+r_5 ))∣+(N_6 /(a^2 (√r_6 )))arctan (t/( (√r_6 )))=       =(N_5 /a^2 )ln∣(((x/( (√(x^2 +a^2 ))))−r_5 )/((x/( (√(x^2 +a^2 ))))+r_5 ))∣+(N_6 /(a^2 (√r_6 )))arctan (x/( (√(r_6 (x^2 +a^2 )))))
thisisthemethod:dxx2+x2+a2=x2x4x2a2dxx2+a2x4x2a2dxx2x4x2a2dx==4i=1Nixridx=4i=1Nilnxrix2+a2x4x2a2dx=[t=xx2+a2dx=dta2(x2+a2)3]=1a2dtt4+1a2t21a2==N5a2(dttr5dtt+r5)+N6a2dtt2+r6=[r6>0]=N5a2lntr5t+r5+N6a2r6arctantr6==N5a2lnxx2+a2r5xx2+a2+r5+N6a2r6arctanxr6(x2+a2)
Commented by MJS last updated on 20/Jun/18
r_1 =−((√2)/2)(√(1−(√(4a^2 +1))))  r_2 =−((√2)/2)(√(1+(√(4a^2 +1))))  r_3 =((√2)/2)(√(1−(√(4a^2 +1))))  r_4 =((√2)/2)(√(1+(√(4a^2 +1))))  r_5 =((√2)/(2a))(√(−1+(√(4a^2 +1))))  r_6 =((1+(√(4a^2 +1)))/(2a^2 ))  N_1 =((√(2−2(√(4a^2 +1))))/(4(√(4a^2 +1))))  N_2 =−((√(2+2(√(4a^2 +1))))/(4(√(4a^2 +1))))  N_3 =−((√(2−2(√(4a^2 +1))))/(4(√(4a^2 +1))))  N_4 =((√(2+2(√(4a^2 +1))))/(4(√(4a^2 +1))))  N_5 =((a^3 (√2))/(2(√((4a^2 +1)(−1+(√(4a^2 +1)))))))  N_6 =−(a^2 /( (√(4a^2 +1))))
r1=2214a2+1r2=221+4a2+1r3=2214a2+1r4=221+4a2+1r5=22a1+4a2+1r6=1+4a2+12a2N1=224a2+144a2+1N2=2+24a2+144a2+1N3=224a2+144a2+1N4=2+24a2+144a2+1N5=a322(4a2+1)(1+4a2+1)N6=a24a2+1
Commented by math khazana by abdo last updated on 20/Jun/18
thank you sir Mjs
thankyousirMjs

Leave a Reply

Your email address will not be published. Required fields are marked *