Question Number 37902 by math khazana by abdo last updated on 19/Jun/18

Commented by prof Abdo imad last updated on 19/Jun/18

Answered by ajfour last updated on 19/Jun/18

Commented by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18

Answered by MJS last updated on 19/Jun/18
![this is the method: ∫(dx/(x^2 +(√(x^2 +a^2 ))))=∫(x^2 /(x^4 −x^2 −a^2 ))dx−∫((√(x^2 +a^2 ))/(x^4 −x^2 −a^2 ))dx ∫(x^2 /(x^4 −x^2 −a^2 ))dx= =Σ_(i=1) ^4 ∫(N_i /(x−r_i ))dx=Σ_(i=1) ^4 N_i ln∣x−r_i ∣ ∫((√(x^2 +a^2 ))/(x^4 −x^2 −a^2 ))dx= [t=(x/( (√(x^2 +a^2 )))) → dx=(dt/a^2 )(√((x^2 +a^2 )^3 ))] =(1/a^2 )∫(dt/(t^4 +(1/a^2 )t^2 −(1/a^2 )))= =(N_5 /a^2 )(∫(dt/(t−r_5 ))−∫(dt/(t+r_5 )))+(N_6 /a^2 )∫(dt/(t^2 +r_6 ))= [r_6 >0] =(N_5 /a^2 )ln∣((t−r_5 )/(t+r_5 ))∣+(N_6 /(a^2 (√r_6 )))arctan (t/( (√r_6 )))= =(N_5 /a^2 )ln∣(((x/( (√(x^2 +a^2 ))))−r_5 )/((x/( (√(x^2 +a^2 ))))+r_5 ))∣+(N_6 /(a^2 (√r_6 )))arctan (x/( (√(r_6 (x^2 +a^2 )))))](https://www.tinkutara.com/question/Q37934.png)
Commented by MJS last updated on 20/Jun/18

Commented by math khazana by abdo last updated on 20/Jun/18
