Menu Close

Integral-I-0-pi-ln-sin-x-tan-1-cot-x-dx-0-proof-I-0-pi-ln-sin-x-tan-1-tan-pi-2-x-dx-0-pi-pi-2-x-




Question Number 152201 by mnjuly1970 last updated on 26/Aug/21
     ...Integral...            I := ∫_0 ^( π) ln (sin(x) ).tan^( −1) (cot(x))dx=^?  0       proof :: ....        I := ∫_0 ^( π) ln (sin(x) ). tan^( −1) ( tan((π/2) −x ))dx         := ∫_0 ^( π) ((π/2) −x ).ln(sin(x))dx          := (π/2) ∫_0 ^( π) ln(sin(x))dx−∫_0 ^( π) xln(sin(x))dx         := (π/2) (−π ln (2 )) −J   ......( 1 )          J : = ∫_0 ^( π) (π − x) ln (sin(x))dx            := π (−π ln(2))−J          ∴     J :=((−π^( 2) )/2) ln( 2 ) .......(2)        (2) ⇛ (1 ) :     I = 0 .........■
IntegralI:=0πln(sin(x)).tan1(cot(x))dx=?0proof::.I:=0πln(sin(x)).tan1(tan(π2x))dx:=0π(π2x).ln(sin(x))dx:=π20πln(sin(x))dx0πxln(sin(x))dx:=π2(πln(2))J(1)J:=0π(πx)ln(sin(x))dx:=π(πln(2))JJ:=π22ln(2).(2)(2)(1):I=0◼

Leave a Reply

Your email address will not be published. Required fields are marked *