Question Number 125684 by mnjuly1970 last updated on 13/Dec/20
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:….\:\mathrm{INTEGRAL}… \\ $$$$\:\:\:\:\mathrm{prove}\:\:\mathrm{that}\:: \\ $$$$\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} {x}^{\mathrm{3}} \left\{{ln}\left(\mathrm{1}+{e}^{{x}} \right)\:−{x}\right\}{dx}=\frac{\mathrm{45}}{\mathrm{8}}\:\zeta\left(\:\mathrm{5}\:\right) \\ $$$$ \\ $$
Answered by Dwaipayan Shikari last updated on 13/Dec/20
$$\int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{3}} {log}\left(\frac{\mathrm{1}+{e}^{{x}} }{{e}^{{x}} }\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{3}} {log}\left(\mathrm{1}+{e}^{−{x}} \right){dx} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{3}} {e}^{−{nx}} {dx} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \frac{\mathrm{1}}{{n}^{\mathrm{5}} }\int_{\mathrm{0}} ^{\infty} \Lambda^{\mathrm{3}} {e}^{−\Lambda} {dx}\:\:\:\:\:\:\:{nx}=\Lambda \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{{n}^{\mathrm{5}} }\Gamma\left(\mathrm{4}\right)=\mathrm{6}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{{n}^{\mathrm{5}} }=\frac{\mathrm{90}}{\mathrm{16}}\zeta\left(\mathrm{5}\right)=\frac{\mathrm{45}}{\mathrm{8}}\zeta\left(\mathrm{5}\right) \\ $$$$\boldsymbol{{Note}}\:: \\ $$$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{5}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{5}} }+\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{5}} }+…=\zeta\left(\mathrm{5}\right) \\ $$$$\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{5}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{5}} }−\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{5}} }+..={S}\:\:\: \\ $$$${S}+\zeta\left(\mathrm{5}\right)=\mathrm{2}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{5}} }+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{5}} }+…\right)\:\:\:\:\:\:\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{5}} }+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{5}} }+…\right)=\zeta\left(\mathrm{5}\right)\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{5}} }\right) \\ $$$${S}=\mathrm{2}\zeta\left(\mathrm{5}\right)−\frac{\zeta\left(\mathrm{5}\right)}{\mathrm{2}^{\mathrm{4}} }−\zeta\left(\mathrm{5}\right)=\zeta\left(\mathrm{5}\right)\frac{\mathrm{15}}{\mathrm{16}} \\ $$
Commented by Dwaipayan Shikari last updated on 13/Dec/20
$${But}\:{i}\:{haven}'{t}\:{find}\:{the}\:{same}\:{sir}! \\ $$
Commented by mnjuly1970 last updated on 13/Dec/20
$${thank}\:{you}\:{mr}\:{payan} \\ $$$${you}\:{solution}\:{is}\:{very} \\ $$$${nice} \\ $$$${to}\:{me}\:\:{final}\:{answer}\:{isn}'{t}\:{very} \\ $$$${important}… \\ $$$$ \\ $$
Commented by Dwaipayan Shikari last updated on 13/Dec/20
Commented by Dwaipayan Shikari last updated on 13/Dec/20
$${I}\:{think}\:{something}\:{wrong}\:{in}\:{question} \\ $$
Commented by mnjuly1970 last updated on 13/Dec/20
$${you}\:\:{are}\:{right}. \\ $$$$\:{i}\:{mistaked}.{sorry}… \\ $$
Commented by mnjuly1970 last updated on 13/Dec/20