Menu Close

integrate-1-x-2-y-xy-2x-0-with-cond-y-1-0-




Question Number 30419 by abdo imad last updated on 22/Feb/18
integrate (1+x^2 )y^′  +xy −2x=0 with cond.y(1)=0
$${integrate}\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}^{'} \:+{xy}\:−\mathrm{2}{x}=\mathrm{0}\:{with}\:{cond}.{y}\left(\mathrm{1}\right)=\mathrm{0} \\ $$
Answered by sma3l2996 last updated on 24/Feb/18
(1+x^2 )y′=x(2−y)  (dy/(2−y))=(x/(1+x^2 ))dx  −ln∣2−y∣=(1/2)ln∣C(1+x^2 )∣  (1/(2−y))=(√(C(1+x^2 )))  y=2−(1/( (√(C(1+x^2 )))))  y(1)=0⇒(1/( (√(2C))))=2⇔C=(1/8)  so  y(x)=2(1−((√2)/( (√(1+x^2 )))))
$$\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}'={x}\left(\mathrm{2}−{y}\right) \\ $$$$\frac{{dy}}{\mathrm{2}−{y}}=\frac{{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$−{ln}\mid\mathrm{2}−{y}\mid=\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid{C}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\mid \\ $$$$\frac{\mathrm{1}}{\mathrm{2}−{y}}=\sqrt{{C}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)} \\ $$$${y}=\mathrm{2}−\frac{\mathrm{1}}{\:\sqrt{{C}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}} \\ $$$${y}\left(\mathrm{1}\right)=\mathrm{0}\Rightarrow\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}{C}}}=\mathrm{2}\Leftrightarrow{C}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$${so}\:\:{y}\left({x}\right)=\mathrm{2}\left(\mathrm{1}−\frac{\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *