Menu Close

integrate-by-use-a-partial-friction-lnx-1-x-2-




Question Number 43191 by MASANJA J last updated on 08/Sep/18
integrate by use a partial friction  ∫((lnx)/((1+x)^2 ))
integratebyuseapartialfrictionlnx(1+x)2
Commented by mondodotto@gmail.com last updated on 09/Sep/18
did you mean by parts?
didyoumeanbyparts?
Commented by maxmathsup by imad last updated on 08/Sep/18
let I = ∫  ((ln(x)dx)/((1+x)^2 ))  by parts u^′ =(1/((1+x)^2 )) and v=ln(x)   I =−((ln(x))/(1+x)) +∫   (1/((1+x)x))dx but ∫   (dx/(x(1+x))) =∫((1/x) −(1/(x+1)))dx=ln∣(x/(x+1))∣ +c ⇒  I =ln∣(x/(x+1))∣−((ln(x))/(1+x)) +c .
letI=ln(x)dx(1+x)2bypartsu=1(1+x)2andv=ln(x)I=ln(x)1+x+1(1+x)xdxbutdxx(1+x)=(1x1x+1)dx=lnxx+1+cI=lnxx+1ln(x)1+x+c.
Commented by maxmathsup by imad last updated on 09/Sep/18
integration by parts .
integrationbyparts.
Answered by alex041103 last updated on 08/Sep/18
first we use IBP:  ∫((lnx)/((1+x)^2 ))dx=∫−lnx d((1/(1+x)))=  =−(((lnx)/(1+x)) −∫((d(lnx))/(1+x)))=  =∫(dx/(x(1+x))) − ((ln(x))/(1+x))  (1/(x(1+x)))=(1/x)−(1/(1+x))  ⇒∫(dx/(x(1+x)))=∫(dx/x) − ∫((d(x+1))/(1+x))=  =ln(x)−ln(x+1)=ln((x/(1+x)))  ⇒∫((lnx)/((1+x)^2 ))dx=ln((x/(1+x)))−((ln(x))/(1+x))+C
firstweuseIBP:lnx(1+x)2dx=lnxd(11+x)==(lnx1+xd(lnx)1+x)==dxx(1+x)ln(x)1+x1x(1+x)=1x11+xdxx(1+x)=dxxd(x+1)1+x==ln(x)ln(x+1)=ln(x1+x)lnx(1+x)2dx=ln(x1+x)ln(x)1+x+C

Leave a Reply

Your email address will not be published. Required fields are marked *