Menu Close

integrate-ln-cosx-sinx-dx-




Question Number 46667 by Necxx last updated on 29/Oct/18
integrate ln (cosx+sinx)dx
integrateln(cosx+sinx)dx
Commented by maxmathsup by imad last updated on 29/Oct/18
let f(x)=∫_0 ^x ln(cost +sint)dt  we have  f(x)= ∫_0 ^x ln((√2)cos(t−(π/4)))dt=(x/2)ln(2) +∫_0 ^x ln(cos(t−(π/4))dt but  ∫_0 ^x ln(cos(t−(π/4)))dt =_(t−(π/4)=−u)   ∫_(π/4) ^((π/4)−x)  ln(cosu)du   by parts  = [u ln(cosu)]_(π/4) ^((π/4)−x)  −∫_(π/4) ^((π/4)−x)  u  ((−sinu)/(cosu)) du  = ∫_(π/4) ^((π/4)−x)   u tan(u)( du changement tanu =t )  =∫_1 ^(tan((π/4)−x))   t arctant  (dt/(1+t^2 )) =∫_1 ^(tan((π/4)−x))   ((t arctant)/(1+t^2 ))dt  =[(1/2)ln(1+t^2 )arctant]_1 ^(tan((π/4)−x))  −∫_1 ^(tan((π/4)−x))  (1/2)ln(1+t^2 ) (dt/(1+t^2 ))  =(1/2)((π/4)−x)ln(1+tan^2 ((π/4)−x))−(π/8)ln(2)−(1/2) ∫_1 ^(tan((π/4)−x))   ((ln(1+t^2 ))/(1+t^2 )) dt  ...be continued...
letf(x)=0xln(cost+sint)dtwehavef(x)=0xln(2cos(tπ4))dt=x2ln(2)+0xln(cos(tπ4)dtbut0xln(cos(tπ4))dt=tπ4=uπ4π4xln(cosu)dubyparts=[uln(cosu)]π4π4xπ4π4xusinucosudu=π4π4xutan(u)(duchangementtanu=t)=1tan(π4x)tarctantdt1+t2=1tan(π4x)tarctant1+t2dt=[12ln(1+t2)arctant]1tan(π4x)1tan(π4x)12ln(1+t2)dt1+t2=12(π4x)ln(1+tan2(π4x))π8ln(2)121tan(π4x)ln(1+t2)1+t2dtbecontinued

Leave a Reply

Your email address will not be published. Required fields are marked *