Menu Close

integrate-the-d-equation-xy-y-2x-1-x-4-




Question Number 36947 by maxmathsup by imad last updated on 07/Jun/18
integrate the d.equation  xy^′  +y = ((2x)/( (√(1−x^4 )))) .
$${integrate}\:{the}\:{d}.{equation}\:\:{xy}^{'} \:+{y}\:=\:\frac{\mathrm{2}{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}\:. \\ $$
Commented by abdo.msup.com last updated on 07/Jun/18
h.e→ xy^′  +y =0 ⇒(y^′ /y) =−(1/x) ⇒  ln∣y∣ =−ln∣x∣ +c ⇒y = (k/(∣x∣))  if 0<x<1  y =(k/x)  mvc method give  y^′  = (k^′ /x) −(k/x^2 )  (e) ⇔ k^′  −(k/x) +(k/x)  =((2x)/( (√(1−x^4 )))) ⇒  k = ∫  ((2x)/( (√(1−x^4 ))))dx  +λ  changement x^2 =t  give 2xdx =dt  and  k(x)=∫  (dt/( (√(1−t^2 ))))  =arcsin(t) +c =arcsin(x^2 ) +c ⇒  y(x)=(1/x){ arcsin(x^2 ) +c}   y(x)= ((arcsin(x^2 ))/x) +(c/x) .
$${h}.{e}\rightarrow\:{xy}^{'} \:+{y}\:=\mathrm{0}\:\Rightarrow\frac{{y}^{'} }{{y}}\:=−\frac{\mathrm{1}}{{x}}\:\Rightarrow \\ $$$${ln}\mid{y}\mid\:=−{ln}\mid{x}\mid\:+{c}\:\Rightarrow{y}\:=\:\frac{{k}}{\mid{x}\mid} \\ $$$${if}\:\mathrm{0}<{x}<\mathrm{1}\:\:{y}\:=\frac{{k}}{{x}}\:\:{mvc}\:{method}\:{give} \\ $$$${y}^{'} \:=\:\frac{{k}^{'} }{{x}}\:−\frac{{k}}{{x}^{\mathrm{2}} } \\ $$$$\left({e}\right)\:\Leftrightarrow\:{k}^{'} \:−\frac{{k}}{{x}}\:+\frac{{k}}{{x}}\:\:=\frac{\mathrm{2}{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}\:\Rightarrow \\ $$$${k}\:=\:\int\:\:\frac{\mathrm{2}{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}{dx}\:\:+\lambda\:\:{changement}\:{x}^{\mathrm{2}} ={t} \\ $$$${give}\:\mathrm{2}{xdx}\:={dt}\:\:{and}\:\:{k}\left({x}\right)=\int\:\:\frac{{dt}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }} \\ $$$$={arcsin}\left({t}\right)\:+{c}\:={arcsin}\left({x}^{\mathrm{2}} \right)\:+{c}\:\Rightarrow \\ $$$${y}\left({x}\right)=\frac{\mathrm{1}}{{x}}\left\{\:{arcsin}\left({x}^{\mathrm{2}} \right)\:+{c}\right\}\: \\ $$$${y}\left({x}\right)=\:\frac{{arcsin}\left({x}^{\mathrm{2}} \right)}{{x}}\:+\frac{{c}}{{x}}\:. \\ $$$$ \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 07/Jun/18
x(dy/dx)+y=((2x)/( (√(1−x^4 ))))  xdy+ydx=((2x)/( (√(1−x^4 ))))dx  d(xy)=((d(x^2 ))/( (√(1−(x^2 )^2 ))))  ∫d(xy)=∫((d(x^2 ))/( (√(1−(x^2 )^2 ))))  xy=sin^(−1) (x^2 )+c
$${x}\frac{{dy}}{{dx}}+{y}=\frac{\mathrm{2}{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }} \\ $$$${xdy}+{ydx}=\frac{\mathrm{2}{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}{dx} \\ $$$${d}\left({xy}\right)=\frac{{d}\left({x}^{\mathrm{2}} \right)}{\:\sqrt{\mathrm{1}−\left({x}^{\mathrm{2}} \right)^{\mathrm{2}} }} \\ $$$$\int{d}\left({xy}\right)=\int\frac{{d}\left({x}^{\mathrm{2}} \right)}{\:\sqrt{\mathrm{1}−\left({x}^{\mathrm{2}} \right)^{\mathrm{2}} }} \\ $$$${xy}={sin}^{−\mathrm{1}} \left({x}^{\mathrm{2}} \right)+{c} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *