Question Number 35618 by abdo mathsup 649 cc last updated on 21/May/18
$${integrate}\:{the}\:{e}.{d}.\:{y}'\:\:+{e}^{−\mathrm{2}{x}} {y}\:=\:\left(\mathrm{2}{x}+\mathrm{1}\right){cosx} \\ $$
Commented by abdo mathsup 649 cc last updated on 26/May/18
$${e}.{h}.\rightarrow{y}^{'} \:+\:{e}^{−\mathrm{2}{x}} \:{y}=\mathrm{0}\:\Rightarrow{y}^{'} \:=−{e}^{−\mathrm{2}{x}} \:{y}\:\Rightarrow \\ $$$$\frac{{y}^{'} }{{y}}\:=−{e}^{−\mathrm{2}{x}} \:\Rightarrow{ln}\mid{y}\mid\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:{e}^{−\mathrm{2}{x}} \:\:+{c}\:\Rightarrow \\ $$$$\:{y}\:=\:{k}\:{e}^{\frac{\mathrm{1}}{\mathrm{2}}{e}^{−\mathrm{2}{x}} } \:\:\:\:{let}\:{use}\:{mvc}\:{method}\: \\ $$$${y}\left({x}\right)={k}\left({x}\right)\:{e}^{\frac{\mathrm{1}}{\mathrm{2}}{e}^{−\mathrm{2}{x}} } \:\:\Rightarrow{y}^{'} \left({x}\right)={k}^{'} \left({x}\right){e}^{\frac{\mathrm{1}}{\mathrm{2}}{e}^{−\mathrm{2}{x}} } \: \\ $$$$+\:{k}\left({x}\right)\left(−{e}^{−\mathrm{2}{x}} \right){e}^{\frac{\mathrm{1}}{\mathrm{2}}{e}^{−\mathrm{2}{x}} } \:\:\:\left({e}\right)\Rightarrow \\ $$$${k}^{'} \left({x}\right)\:{e}^{\frac{\mathrm{1}}{\mathrm{2}}{e}^{−\mathrm{2}{x}} } \:−{k}\left({x}\right){e}^{−\mathrm{2}{x}} \:{e}^{\frac{\mathrm{1}}{\mathrm{2}}{e}^{−\mathrm{2}{x}} } \:+{e}^{−\mathrm{2}{x}} {k}\left({x}\right){e}^{\frac{\mathrm{1}}{\mathrm{2}}{e}^{−\mathrm{2}{x}} } \\ $$$$\left(\mathrm{2}{x}+\mathrm{1}\right){cosx}\:\Rightarrow\:{k}^{'} \left({x}\right)\:{e}^{\frac{\mathrm{1}}{\mathrm{2}}{e}^{−\mathrm{2}{x}} } \:=\left(\mathrm{2}{x}+\mathrm{1}\right){cosx}\:\Rightarrow \\ $$$${k}^{'} \left({x}\right)\:=\:\left(\mathrm{2}{x}+\mathrm{1}\right)\:{e}^{\frac{\mathrm{1}}{\mathrm{2}}{e}^{−\mathrm{2}{x}} } {cosx}\:\Rightarrow \\ $$$${k}\left({x}\right)\:=\:\int\:\:\:\:\left(\mathrm{2}{x}+\mathrm{1}\right){e}^{\frac{\mathrm{1}}{\mathrm{2}}{e}^{−\mathrm{2}{x}} } {cosx}\:{dx}\:+\lambda\:\:{and} \\ $$$${y}\left({x}\right)=\left\{\:\int\:\left(\mathrm{2}{x}+\mathrm{1}\right){e}^{\frac{\mathrm{1}}{\mathrm{2}}{e}^{−\mathrm{2}{x}} } {cosx}\:{dx}\:+\lambda\right\}\:{e}^{\frac{\mathrm{1}}{\mathrm{2}}{e}^{−\mathrm{2}{x}} } . \\ $$