Menu Close

Integrate-the-following-1-a-x-x-dx-2-dx-sin-x-3-2-cos-x-




Question Number 84234 by niroj last updated on 10/Mar/20
  Integrate the following:     1. ∫(√((a+x)/x)) dx     2.∫  (dx/(sin x(3+2 cos x)))
Integratethefollowing:1.a+xxdx2.dxsinx(3+2cosx)
Commented by mathmax by abdo last updated on 10/Mar/20
I =∫(√((a+x)/x))dx ⇒I =∫ ((√(a+x))/( (√x)))dx =_((√x)=t)   ∫  ((√(a+t^2 ))/t)(2t)dt  =2 ∫(√(a+t^2 ))dt  =_(t=(√a)sh(u))    2 ∫ (√a)ch(u)(√a)ch(u)du  =2a ∫ ch^2 u du =2a ∫ (((1+ch(2u))/2))du  =a ∫(1+ch(2u))du =au +(a/2)sh(2u) +C  =au +ash(u)ch(u) +C  but  u=argsh((t/( (√a)))) =argsh((√(x/a)))  =ln((√(x/a))+(√(1+(x/a)))) ⇒ I =aln((√(x/a))+(√(1+(x/a))))  +a ((√x)/( (√a)))(√(1+(x/a)))   +C  I =aln((((√x)+(√(a+x)))/( (√a))))  + (√x)(√(a+x))  +C
I=a+xxdxI=a+xxdx=x=ta+t2t(2t)dt=2a+t2dt=t=ash(u)2ach(u)ach(u)du=2ach2udu=2a(1+ch(2u)2)du=a(1+ch(2u))du=au+a2sh(2u)+C=au+ash(u)ch(u)+Cbutu=argsh(ta)=argsh(xa)=ln(xa+1+xa)I=aln(xa+1+xa)+axa1+xa+CI=aln(x+a+xa)+xa+x+C
Commented by mathmax by abdo last updated on 10/Mar/20
I =∫  (dx/(sinx(3+2cosx))) changement tan((x/2))=t give  I =∫  (1/(((2t)/(1+t^2 ))(3+2.((1−t^2 )/(1+t^2 )))))×((2dt)/(1+t^2 )) =∫(dt/(3t +2t((1−t^2 )/(1+t^2 ))))  =∫  ((1+t^2 )/(3t+3t^3  +2t−2t^3 ))dt =∫  ((t^2  +1)/(t^3  +5t))dt =∫ ((t^2  +1)/(t(t^2  +5)))dt let decompose  F(t)=((t^2  +1)/(t(t^2  +5))) ⇒F(t)=(a/t) +((bt +c)/(t^2  +5))  a =tF(t)∣_(t=0) =(1/5)  lim_(t→+∞) tF(t) =1 =a+b ⇒b=1−a=(4/5)  F(1) =(1/3) =a +((b+c)/6) ⇒2 =6a +b+c ⇒c=2−6a−b  =2−(6/5)−(4/5) =0 ⇒F(t)=(1/(5t)) +(4/5)×(t/(t^2  +5)) ⇒  I =(1/5)ln∣t∣  +(2/5)ln(t^2  +5) +C  I =(1/5)ln∣tan((x/2))∣ +(2/5)ln(5+tan^2 ((x/2))) +C.
I=dxsinx(3+2cosx)changementtan(x2)=tgiveI=12t1+t2(3+2.1t21+t2)×2dt1+t2=dt3t+2t1t21+t2=1+t23t+3t3+2t2t3dt=t2+1t3+5tdt=t2+1t(t2+5)dtletdecomposeF(t)=t2+1t(t2+5)F(t)=at+bt+ct2+5a=tF(t)t=0=15limt+tF(t)=1=a+bb=1a=45F(1)=13=a+b+c62=6a+b+cc=26ab=26545=0F(t)=15t+45×tt2+5I=15lnt+25ln(t2+5)+CI=15lntan(x2)+25ln(5+tan2(x2))+C.
Answered by TANMAY PANACEA last updated on 10/Mar/20
∫((a+x)/( (√(x^2 +ax))))dx  (1/2)∫((2x+a+a)/( (√(x^2 +ax))))dx  (1/2)∫((d(x^2 +ax))/( (√(x^2 +ax))))+(a/2)∫(dx/( (√((x+(a/2))^2 −(a^2 /4)))))  (1/2)×(((x^2 +ax)^(1/2) )/(1/2))+(a/2)ln(x+(a/2)+(√((x+(a/2))^2 −(a^2 /4)))
a+xx2+axdx122x+a+ax2+axdx12d(x2+ax)x2+ax+a2dx(x+a2)2a2412×(x2+ax)1212+a2ln(x+a2+(x+a2)2a24
Answered by TANMAY PANACEA last updated on 10/Mar/20
∫((sinx)/((1−cos^2 x)(3+2cosx)))dx  ∫((−da)/((1−a^2 )(3+2a)))   [a=cosx]  ∫(da/((a+1)(a−1)(3+2a)))  (1/((a+1)(a−1)(3+2a)))=(p/(a+1))+(q/(a−1))+(r/(3+2a))  1=p(a−1)(3+2a)+q(a+1)(3+2a)+r(a+1)(a−1)  put a−1=0    1=q×2×5→q=(1/(10))  put a+1=0  1=p(−2)(1)→p=((−1)/2)  put 3+2a=0  1=r(((−3)/2)+1)(((−3)/2)−1)→1=r((5/4)) r=(4/5)  ∫(((−1)/2)/(a+1))da+∫((1/(10))/(a−1))da+∫((4/5)/(3+2a))da  ((−1)/2)ln(a+1)+(1/(10))ln(a−1)+(4/5)×(1/2)∫(da/(a+(3/2)))  ((−1)/2)ln(cosx+1)+(1/(10))ln(cosx−1)+(4/(10))ln(cosx+(3/2))
sinx(1cos2x)(3+2cosx)dxda(1a2)(3+2a)[a=cosx]da(a+1)(a1)(3+2a)1(a+1)(a1)(3+2a)=pa+1+qa1+r3+2a1=p(a1)(3+2a)+q(a+1)(3+2a)+r(a+1)(a1)puta1=01=q×2×5q=110puta+1=01=p(2)(1)p=12put3+2a=01=r(32+1)(321)1=r(54)r=4512a+1da+110a1da+453+2ada12ln(a+1)+110ln(a1)+45×12daa+3212ln(cosx+1)+110ln(cosx1)+410ln(cosx+32)
Commented by niroj last updated on 10/Mar/20
thanks for all to give your best.
thanksforalltogiveyourbest.
Answered by behi83417@gmail.com last updated on 04/Apr/20
∫(√((a+x)/x))dx    [x=atg^2 t⇒dx=((2atgtdt)/(cos^2 t))]  ⇒I=∫(1/(sint)).((2atgt)/(cos^2 t))dt=2a∫(dt/(cos^3 t))=  =a[sect.tgt+ln(sect+tgt)]+C=  =a[(√(x/a)).(√(1+(x/a)))+ln((√(1+(x/a)))+(√(x/a)))]=  =(√(x^2 +ax))+a.ln((√(a+x))+(√x))+C′   .  [tgt=(√(x/a)),sect=(√(1+tg^2 t))=(√(1+(x/a))),C′=C+(a/2)lna]
a+xxdx[x=atg2tdx=2atgtdtcos2t]I=1sint.2atgtcos2tdt=2adtcos3t==a[sect.tgt+ln(sect+tgt)]+C==a[xa.1+xa+ln(1+xa+xa)]==x2+ax+a.ln(a+x+x)+C.[tgt=xa,sect=1+tg2t=1+xa,C=C+a2lna]

Leave a Reply

Your email address will not be published. Required fields are marked *