Question Number 84234 by niroj last updated on 10/Mar/20

Commented by mathmax by abdo last updated on 10/Mar/20

Commented by mathmax by abdo last updated on 10/Mar/20

Answered by TANMAY PANACEA last updated on 10/Mar/20

Answered by TANMAY PANACEA last updated on 10/Mar/20
![∫((sinx)/((1−cos^2 x)(3+2cosx)))dx ∫((−da)/((1−a^2 )(3+2a))) [a=cosx] ∫(da/((a+1)(a−1)(3+2a))) (1/((a+1)(a−1)(3+2a)))=(p/(a+1))+(q/(a−1))+(r/(3+2a)) 1=p(a−1)(3+2a)+q(a+1)(3+2a)+r(a+1)(a−1) put a−1=0 1=q×2×5→q=(1/(10)) put a+1=0 1=p(−2)(1)→p=((−1)/2) put 3+2a=0 1=r(((−3)/2)+1)(((−3)/2)−1)→1=r((5/4)) r=(4/5) ∫(((−1)/2)/(a+1))da+∫((1/(10))/(a−1))da+∫((4/5)/(3+2a))da ((−1)/2)ln(a+1)+(1/(10))ln(a−1)+(4/5)×(1/2)∫(da/(a+(3/2))) ((−1)/2)ln(cosx+1)+(1/(10))ln(cosx−1)+(4/(10))ln(cosx+(3/2))](https://www.tinkutara.com/question/Q84243.png)
Commented by niroj last updated on 10/Mar/20

Answered by behi83417@gmail.com last updated on 04/Apr/20
![∫(√((a+x)/x))dx [x=atg^2 t⇒dx=((2atgtdt)/(cos^2 t))] ⇒I=∫(1/(sint)).((2atgt)/(cos^2 t))dt=2a∫(dt/(cos^3 t))= =a[sect.tgt+ln(sect+tgt)]+C= =a[(√(x/a)).(√(1+(x/a)))+ln((√(1+(x/a)))+(√(x/a)))]= =(√(x^2 +ax))+a.ln((√(a+x))+(√x))+C′ . [tgt=(√(x/a)),sect=(√(1+tg^2 t))=(√(1+(x/a))),C′=C+(a/2)lna]](https://www.tinkutara.com/question/Q84256.png)