Menu Close

Integrate-the-function-f-x-y-xy-x-2-y-2-over-the-domain-R-3-x-2-y-2-3-1-xy-4-




Question Number 98520 by bobhans last updated on 14/Jun/20
Integrate the function f(x,y) = xy(x^2 +y^2 )  over the domain R:{−3≤x^2 −y^2 ≤3, 1≤xy≤4}
Integratethefunctionf(x,y)=xy(x2+y2)overthedomainR:{3x2y23,1xy4}
Answered by john santu last updated on 14/Jun/20
I=∫∫_R xy(x^2 +y^2 )dxdy   put x^2 −y^2 =u ; xy=v  limits : −3≤u≤3; 1≤v≤4 which   bounds region R  J = ((J(u,v))/(J(x,y))) =  determinant ((((∂u/∂x)    (∂u/∂y))),(((∂v/∂x)    (∂v/∂y))))=  determinant (((2x   −2y)),((y           x)))  = 2x^2 +2y^2    J(x,y) = ((J(u,v))/(2(x^2 +y^2 )))  I = (1/2) ∫_(u=−3) ^(u=3)  ∫_(v=1) ^(v=4)  v dvdu   = (1/2) [3−(−3))((v^2 /2)) ]_1 ^4   = 3 ( ((15)/2)) = ((45)/(2 )) ■
I=Rxy(x2+y2)dxdyputx2y2=u;xy=vlimits:3u3;1v4whichboundsregionRJ=J(u,v)J(x,y)=|uxuyvxvy|=|2x2yyx|=2x2+2y2J(x,y)=J(u,v)2(x2+y2)I=12u=3u=3v=4v=1vdvdu=12[3(3))(v22)]14=3(152)=452◼

Leave a Reply

Your email address will not be published. Required fields are marked *