Menu Close

integrate-w-r-t-x-e-x-2-dx-




Question Number 30008 by Jmasanja last updated on 14/Feb/18
integrate w.r.t x  ∫(e^x^2  )dx
$${integrate}\:{w}.{r}.{t}\:{x} \\ $$$$\int\left({e}^{{x}^{\mathrm{2}} } \right){dx} \\ $$
Commented by abdo imad last updated on 14/Feb/18
we have e^u  =Σ_(n=0) ^∞   (u^n /(n!)) ⇒ e^x^2  = Σ_(n=0) ^∞   (x^(2n) /(n!)) and due to  uniform convergence  ∫ e^x^2   dx =Σ_(n=0) ^∞    (x^(2n+1) /((2n+1)(n!)))  ....
$${we}\:{have}\:{e}^{{u}} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{{u}^{{n}} }{{n}!}\:\Rightarrow\:{e}^{{x}^{\mathrm{2}} } =\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{{x}^{\mathrm{2}{n}} }{{n}!}\:{and}\:{due}\:{to} \\ $$$${uniform}\:{convergence}\:\:\int\:{e}^{{x}^{\mathrm{2}} } \:{dx}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)\left({n}!\right)}\:\:…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *