integrate-with-respect-to-x-2x-1-x-2-4x-8-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 20908 by j.masanja06@gmail.com last updated on 07/Sep/17 integratewithrespecttox∫(2x+1x2+4x+8)dx Answered by Joel577 last updated on 07/Sep/17 I=∫2x+1(x+2)2+4dxLetu=x+2→du=dxI=∫2u−3u2+4duLetu=2tanθ→du=2sec2θdθtanθ=u2→θ=tan−1(u2)I=∫4tanθ−34(tan2θ+1)2sec2θdθ=∫4tanθ−32dθ=∫2tanθ−32dθ=−2ln∣cosθ∣−32θ+C=−2ln∣2u2+4∣−32tan−1(u2)+C=−2ln∣2(x+2)2+4∣−32tan−1(x+22)+C Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: How-many-zeroes-0-there-in-1-2-3-4-99-100-Next Next post: Question-86447 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.