Menu Close

Integrate-x-4-x-4-x-6-x-6-dx-




Question Number 114671 by soumyasaha last updated on 20/Sep/20
   Integrate  ∫ ((x^4 +x^(−4) )/(x^6 +x^(−6) ))dx
Integratex4+x4x6+x6dx
Answered by Olaf last updated on 20/Sep/20
∫((x^(10) +x^2 )/(x^(12) +1))dx  x^(12) +1 = 0 ⇔ x^(12)  = −1 = e^(iπ)   x_k  = e^(i((π/(12))+((kπ)/6))) , k = 0,1,2...11  ∫Σ_(k=0) ^(11) (A_k /(x−x_k ))dx  A_k  = ((x_k ^6 (x_k ^4 +x_k ^(−4) ))/(Π_(j=0_(j≠k) ) ^(11) (x_j −x_k )))  x_k ^6 = e^(i((π/(12))+((kπ)/6))×6)  = e^(i((π/2)+kπ) = (−1)^k i)   x_k ^4 +x_k ^(−4)  = 2cos[((π/(12))+((kπ)/6))×4] = 2cos((π/3)+((2kπ)/3))  x_k ^4 +x_k ^(−4)  = 0 if k = 1,4,7,10  x_j −x_k  = e^(i((π/(12))+((jπ)/6))) −e^(i((π/(12))+((kπ)/6)))   x_j −x_k  = e^(i((π/(12))+(((j+k)π)/(12)))) [e^(i(((j−k)π)/(12))) −e^(−i(((j−k)π)/(12))) ]  x_j −x_k  = 2ie^(i((π/(12))+(((j+k)π)/(12)))) sin[(((j−k)π)/(12))]  A_k  = (((−1)^k i×2cos((π/3)+((2kπ)/3)))/(2ie^(i((π/(12))+(((j+k)π)/(12)))) sin[(((j−k)π)/(12))]))  A_k  = (((−1)^k cos((π/3)+((2kπ)/3)))/(sin[(((j−k)π)/(12))]))e^(−i((π/(12))+(((j+k)π)/(12))))   ∫((x^4 +x^(−4) )/(x^6 +x^(−6) ))dx = Σ_(k=0,2,3,5,6,8,9,11) A_k ln∣x−x_k ∣
x10+x2x12+1dxx12+1=0x12=1=eiπxk=ei(π12+kπ6),k=0,1,21111k=0AkxxkdxAk=xk6(xk4+xk4)11j=0jk(xjxk)xk6=ei(π12+kπ6)×6=ei(π2+kπ)=(1)kixk4+xk4=2cos[(π12+kπ6)×4]=2cos(π3+2kπ3)xk4+xk4=0ifk=1,4,7,10xjxk=ei(π12+jπ6)ei(π12+kπ6)xjxk=ei(π12+(j+k)π12)[ei(jk)π12ei(jk)π12]xjxk=2iei(π12+(j+k)π12)sin[(jk)π12]Ak=(1)ki×2cos(π3+2kπ3)2iei(π12+(j+k)π12)sin[(jk)π12]Ak=(1)kcos(π3+2kπ3)sin[(jk)π12]ei(π12+(j+k)π12)x4+x4x6+x6dx=k=0,2,3,5,6,8,9,11Aklnxxk
Commented by soumyasaha last updated on 20/Sep/20
Thanks Sir.
ThanksSir.

Leave a Reply

Your email address will not be published. Required fields are marked *