Integrate-x-4-x-4-x-6-x-6-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 114671 by soumyasaha last updated on 20/Sep/20 Integrate∫x4+x−4x6+x−6dx Answered by Olaf last updated on 20/Sep/20 ∫x10+x2x12+1dxx12+1=0⇔x12=−1=eiπxk=ei(π12+kπ6),k=0,1,2…11∫∑11k=0Akx−xkdxAk=xk6(xk4+xk−4)∏11j=0j≠k(xj−xk)xk6=ei(π12+kπ6)×6=ei(π2+kπ)=(−1)kixk4+xk−4=2cos[(π12+kπ6)×4]=2cos(π3+2kπ3)xk4+xk−4=0ifk=1,4,7,10xj−xk=ei(π12+jπ6)−ei(π12+kπ6)xj−xk=ei(π12+(j+k)π12)[ei(j−k)π12−e−i(j−k)π12]xj−xk=2iei(π12+(j+k)π12)sin[(j−k)π12]Ak=(−1)ki×2cos(π3+2kπ3)2iei(π12+(j+k)π12)sin[(j−k)π12]Ak=(−1)kcos(π3+2kπ3)sin[(j−k)π12]e−i(π12+(j+k)π12)∫x4+x−4x6+x−6dx=∑k=0,2,3,5,6,8,9,11Akln∣x−xk∣ Commented by soumyasaha last updated on 20/Sep/20 ThanksSir. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 2-15-11-40-26-75-47-120-Next Next post: x-3-x-1-6-0-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.