Menu Close

integrate-y-1-2-1-y-2-




Question Number 30420 by abdo imad last updated on 22/Feb/18
integrate y^(′′) = (1/2)(√(1+(y^′ )^2 ))     .
$${integrate}\:{y}^{''} =\:\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{1}+\left({y}^{'} \right)^{\mathrm{2}} }\:\:\:\:\:. \\ $$
Answered by sma3l2996 last updated on 24/Feb/18
((dy′)/dx)=(1/2)(√(1+(y′)^2 ))  ((dy′)/( (√(1+(y′)^2 ))))=(dx/2)  ∫(dt/( (√(1+t^2 ))))  t=sinh(u)⇒dt=cosh(u)du=(√(1+sinh^2 u))du  du=(dt/( (√(1+t^2 ))))  ∫(dt/( (√(1+t^2 ))))=∫du=u+λ=sinh^(−1) (t)+λ  so ∫((dy′)/( (√(1+(y′)^2 ))))=sinh^(−1) (y′)=(x/2)+C_1   y′=sinh((x/2)+C_1 )  dy=sinh((x/2)+C_1 )dx  y=2cosh((x/2)+C_1 )+C_2
$$\frac{{dy}'}{{dx}}=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{1}+\left({y}'\right)^{\mathrm{2}} } \\ $$$$\frac{{dy}'}{\:\sqrt{\mathrm{1}+\left({y}'\right)^{\mathrm{2}} }}=\frac{{dx}}{\mathrm{2}} \\ $$$$\int\frac{{dt}}{\:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }} \\ $$$${t}={sinh}\left({u}\right)\Rightarrow{dt}={cosh}\left({u}\right){du}=\sqrt{\mathrm{1}+{sinh}^{\mathrm{2}} {u}}{du} \\ $$$${du}=\frac{{dt}}{\:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }} \\ $$$$\int\frac{{dt}}{\:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}=\int{du}={u}+\lambda={sinh}^{−\mathrm{1}} \left({t}\right)+\lambda \\ $$$${so}\:\int\frac{{dy}'}{\:\sqrt{\mathrm{1}+\left({y}'\right)^{\mathrm{2}} }}={sinh}^{−\mathrm{1}} \left({y}'\right)=\frac{{x}}{\mathrm{2}}+{C}_{\mathrm{1}} \\ $$$${y}'={sinh}\left(\frac{{x}}{\mathrm{2}}+{C}_{\mathrm{1}} \right) \\ $$$${dy}={sinh}\left(\frac{{x}}{\mathrm{2}}+{C}_{\mathrm{1}} \right){dx} \\ $$$${y}=\mathrm{2}{cosh}\left(\frac{{x}}{\mathrm{2}}+{C}_{\mathrm{1}} \right)+{C}_{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *