Menu Close

integration-x-3-x-2-x-1-




Question Number 28701 by students last updated on 29/Jan/18
integration (x^3 /(x^2 +x+1))
integrationx3x2+x+1
Commented by abdo imad last updated on 29/Jan/18
∫   (x^3 /(x^2 +x+1))dx= ∫ ((x^3 −1 +1)/(x^2 +x+1))dx= ∫(x−1)dx ++∫  (dx/(x^2 +x+1))  = (x^2 /2) −x + ∫  (dx/(x^2 +x+1))  but  I=∫  (dx/(x^2 +x+1)) =∫   (dx/((x+(1/2))^2  +(3/4)))  let use the ch.x+(1/2)=((√3)/2)t  I= ∫       (1/((3/4)t^2  +(3/4))) ((√3)/2)dt=((√3)/2)(4/3) ∫   (dt/(1+t^2 ))=((2(√3))/3) arctant  = ((2(√3))/3) arctan( (2/( (√3)))(x+(1/2))) so  ∫    (x^3 /(x^2 +x+1))dx= (x^2 /2)−x +((2(√3))/3) arctan((2/( (√3)))(x+(1/2))).
x3x2+x+1dx=x31+1x2+x+1dx=(x1)dx++dxx2+x+1=x22x+dxx2+x+1butI=dxx2+x+1=dx(x+12)2+34letusethech.x+12=32tI=134t2+3432dt=3243dt1+t2=233arctant=233arctan(23(x+12))sox3x2+x+1dx=x22x+233arctan(23(x+12)).
Commented by abdo imad last updated on 29/Jan/18
∫(...)dx=........+λ.
()dx=..+λ.
Answered by mrW2 last updated on 29/Jan/18
=((x^3 +x^2 +x−x^2 −x−1+1)/(x^2 +x+1))  =x−1+(1/(x^2 +x+1))  =x−1+(1/((x+(1/2))^2 +(((√3)/2))^2 ))  ∫(x^3 /(x^2 +x+1))dx  =(x^2 /2)−x+(2/( (√3))) tan^(−1) ((x+(1/2))/((√3)/2))+C  =(x^2 /2)−x+(2/( (√3))) tan^(−1) ((2x+1)/( (√3)))+C
=x3+x2+xx2x1+1x2+x+1=x1+1x2+x+1=x1+1(x+12)2+(32)2x3x2+x+1dx=x22x+23tan1x+1232+C=x22x+23tan12x+13+C

Leave a Reply

Your email address will not be published. Required fields are marked *