Menu Close

integrte-sin-1-x-




Question Number 46657 by Necxx last updated on 29/Oct/18
integrte sin^(−1) x
integrtesin1x
Answered by tanmay.chaudhury50@gmail.com last updated on 29/Oct/18
∫sin^(−1) x  sin^(−1) x×∫dx−∫[((dsin^(−1) x)/dx)∫dx]dx  xsin^(−1) x−∫(x/( (√(1−x^2 ))))dx  t^2 =1−x^2    2tdt=−2xdx  so∫((xdx)/( (√(1−x^2 ))))  ∫((−tdt)/t).=−t=−(√(1−x^2 ))   ans is  xsin^(−1) x+(√(1−x^2 ))
sin1xsin1x×dx[dsin1xdxdx]dxxsin1xx1x2dxt2=1x22tdt=2xdxsoxdx1x2tdtt.=t=1x2ansisxsin1x+1x2
Commented by Necxx last updated on 29/Oct/18
thanks boss
thanksboss

Leave a Reply

Your email address will not be published. Required fields are marked *