Menu Close

Interval-in-which-given-function-is-decreasing-f-x-2-x-1-2-x-2-2-




Question Number 36957 by rahul 19 last updated on 07/Jun/18
Interval in which given function is  decreasing.  f(x)= (2^x −1)(2^x −2)^2
Intervalinwhichgivenfunctionisdecreasing.f(x)=(2x1)(2x2)2
Answered by tanmay.chaudhury50@gmail.com last updated on 07/Jun/18
y=(2^x −1)(2^x −2)^2   (dy/dx)=(2^x −1)×2(2^x −2)2^x ln2+(2^x −2)^2 ×2^x ×ln2  for decreasing (dy/dx)<0  (t−1)×2(t−2)tln2+ln2×)(t−2)^2 ×t  ln2{2t×(t^2 −3t+2)+t(t^2 −4t+4)}  =ln2{2t^3 −6t^2 +4t+t^3 −4t^2 +4t}  =ln2{3t^3 −10t^2 +8t)  =ln2{t(3t^2 −10t+8)}  =ln2{t(3t^2 −6t−4t+8)}  =ln2[t(3t(t−2)−4(t−2)∣  =ln2t(t−2)(3t−4)  critical value  of t=0,t=2 ,(4/3)  2^x =0   x→−∞  2^x =2  x=1  2^x =(4/3)  x=0.41(approx)  when t>2 i,e x>1  (dy/dx)>0  increasing  when  2>t>(4/3)    1>x>0.41  (dy/dx)<0  decreasing  when (4/3)>t>0        0.41>x>−∞  (dy/dx)>0 increasing  when 0>t   x→−∞   (dy/dx)<0  decreasing
y=(2x1)(2x2)2dydx=(2x1)×2(2x2)2xln2+(2x2)2×2x×ln2fordecreasingdydx<0(t1)×2(t2)tln2+ln2×)(t2)2×tln2{2t×(t23t+2)+t(t24t+4)}=ln2{2t36t2+4t+t34t2+4t}=ln2{3t310t2+8t)=ln2{t(3t210t+8)}=ln2{t(3t26t4t+8)}=ln2[t(3t(t2)4(t2)=ln2t(t2)(3t4)criticalvalueoft=0,t=2,432x=0x2x=2x=12x=43x=0.41(approx)whent>2i,ex>1dydx>0increasingwhen2>t>431>x>0.41dydx<0decreasingwhen43>t>00.41>x>dydx>0increasingwhen0>txdydx<0decreasing
Answered by ajfour last updated on 07/Jun/18
let   u=2^x   ⇒  (du/dx)=2^x ln 2  y=(u−1)(u−2)^2   (dy/dx)=[(u−2)^2 +2(u−1)(u−2)](2^z ln 2)       =(2^x ln 2)(u−2)(3u−4)  (dy/dx) ≤ 0 ⇒ (4/3) ≤ 2^x  ≤ 2    ((2ln 2−ln 3)/(ln 2))  ≤  x  ≤  1  .
letu=2xdudx=2xln2y=(u1)(u2)2dydx=[(u2)2+2(u1)(u2)](2zln2)=(2xln2)(u2)(3u4)dydx0432x22ln2ln3ln2x1.

Leave a Reply

Your email address will not be published. Required fields are marked *