Menu Close

Is-definite-integral-can-have-negative-value-Because-I-think-a-b-f-x-dx-is-total-area-below-graph-f-x-from-x-a-until-x-b-so-it-can-t-be-negative-




Question Number 20202 by Joel577 last updated on 24/Aug/17
Is definite integral can have negative value?  Because I think ∫_a ^b f(x) dx is total area below  graph f(x) from x = a until x = b, so it can′t  be negative
$$\mathrm{Is}\:\mathrm{definite}\:\mathrm{integral}\:\mathrm{can}\:\mathrm{have}\:\mathrm{negative}\:\mathrm{value}? \\ $$$$\mathrm{Because}\:\mathrm{I}\:\mathrm{think}\:\int_{{a}} ^{{b}} {f}\left({x}\right)\:{dx}\:\mathrm{is}\:\mathrm{total}\:\mathrm{area}\:\mathrm{below} \\ $$$$\mathrm{graph}\:{f}\left({x}\right)\:\mathrm{from}\:{x}\:=\:{a}\:\mathrm{until}\:{x}\:=\:{b},\:\mathrm{so}\:\mathrm{it}\:\mathrm{can}'\mathrm{t} \\ $$$$\mathrm{be}\:\mathrm{negative} \\ $$
Commented by ajfour last updated on 24/Aug/17
cannot f(x) itself be negative for  a≤x≤b ?  So ∫_a ^(  b) f(x)dx can be negative,  positive or zero, depending on    values of f(x) in the length x=a  to x=b .
$${cannot}\:{f}\left({x}\right)\:{itself}\:{be}\:{negative}\:{for} \\ $$$${a}\leqslant{x}\leqslant{b}\:? \\ $$$${So}\:\int_{{a}} ^{\:\:{b}} {f}\left({x}\right){dx}\:{can}\:{be}\:{negative}, \\ $$$${positive}\:{or}\:{zero},\:{depending}\:{on}\: \\ $$$$\:{values}\:{of}\:{f}\left({x}\right)\:{in}\:{the}\:{length}\:{x}={a} \\ $$$${to}\:{x}={b}\:. \\ $$
Commented by Joel577 last updated on 24/Aug/17
In example I = ∫_0 ^(π/2) x cos 2x dx  the result is −(1/2). Is it true or not?
$$\mathrm{In}\:\mathrm{example}\:{I}\:=\:\int_{\mathrm{0}} ^{\pi/\mathrm{2}} {x}\:\mathrm{cos}\:\mathrm{2}{x}\:{dx} \\ $$$$\mathrm{the}\:\mathrm{result}\:\mathrm{is}\:−\frac{\mathrm{1}}{\mathrm{2}}.\:\mathrm{Is}\:\mathrm{it}\:\mathrm{true}\:\mathrm{or}\:\mathrm{not}? \\ $$
Commented by ajfour last updated on 24/Aug/17
∫_π ^(  2π) sin xdx= ?, ∫_(−1) ^(  0) xdx=? .  ∫xcos 2xdx=((xsin 2x)/2)∣_0 ^(π/2) −(1/2)∫_0 ^(  π/2) sin 2xdx  = 0+((cos 2x)/4)∣_0 ^(π/2)  = ((−1−1)/4) =−(1/2) .
$$\int_{\pi} ^{\:\:\mathrm{2}\pi} \mathrm{sin}\:{xdx}=\:?,\:\int_{−\mathrm{1}} ^{\:\:\mathrm{0}} {xdx}=?\:. \\ $$$$\int{x}\mathrm{cos}\:\mathrm{2}{xdx}=\frac{{x}\mathrm{sin}\:\mathrm{2}{x}}{\mathrm{2}}\mid_{\mathrm{0}} ^{\pi/\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\:\pi/\mathrm{2}} \mathrm{sin}\:\mathrm{2}{xdx} \\ $$$$=\:\mathrm{0}+\frac{\mathrm{cos}\:\mathrm{2}{x}}{\mathrm{4}}\mid_{\mathrm{0}} ^{\pi/\mathrm{2}} \:=\:\frac{−\mathrm{1}−\mathrm{1}}{\mathrm{4}}\:=−\frac{\mathrm{1}}{\mathrm{2}}\:. \\ $$
Commented by Joel577 last updated on 24/Aug/17
But if I separate it into  ∫_0 ^(π/4) x . cos 2x dx + ∫_(π/4) ^(π/2) x . cos 2x dx  it isn′t −(1/2)
$$\mathrm{But}\:\mathrm{if}\:\mathrm{I}\:\mathrm{separate}\:\mathrm{it}\:\mathrm{into} \\ $$$$\int_{\mathrm{0}} ^{\pi/\mathrm{4}} {x}\:.\:\mathrm{cos}\:\mathrm{2}{x}\:{dx}\:+\:\int_{\pi/\mathrm{4}} ^{\pi/\mathrm{2}} {x}\:.\:\mathrm{cos}\:\mathrm{2}{x}\:{dx} \\ $$$$\mathrm{it}\:\mathrm{isn}'\mathrm{t}\:−\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by ajfour last updated on 24/Aug/17
[((xsin 2x)/2)+((cos 2x)/4)]∣_0 ^(π/4) +[((xsin 2x)/2)+((cos 2x)/4)]∣_(π/4) ^(π/2)   =((π/8)−(1/4))+(−(1/4)−(π/8)) =−(1/2) .
$$\left[\frac{{x}\mathrm{sin}\:\mathrm{2}{x}}{\mathrm{2}}+\frac{\mathrm{cos}\:\mathrm{2}{x}}{\mathrm{4}}\right]\mid_{\mathrm{0}} ^{\pi/\mathrm{4}} +\left[\frac{{x}\mathrm{sin}\:\mathrm{2}{x}}{\mathrm{2}}+\frac{\mathrm{cos}\:\mathrm{2}{x}}{\mathrm{4}}\right]\mid_{\pi/\mathrm{4}} ^{\pi/\mathrm{2}} \\ $$$$=\left(\frac{\pi}{\mathrm{8}}−\frac{\mathrm{1}}{\mathrm{4}}\right)+\left(−\frac{\mathrm{1}}{\mathrm{4}}−\frac{\pi}{\mathrm{8}}\right)\:=−\frac{\mathrm{1}}{\mathrm{2}}\:. \\ $$
Commented by Joel577 last updated on 24/Aug/17
Commented by Joel577 last updated on 24/Aug/17
I have a little doubt about this  The area between (π/4) and (π/2) is below x−axis  So, the integral must be positive, isn′t it?
$$\mathrm{I}\:\mathrm{have}\:\mathrm{a}\:\mathrm{little}\:\mathrm{doubt}\:\mathrm{about}\:\mathrm{this} \\ $$$$\mathrm{The}\:\mathrm{area}\:\mathrm{between}\:\frac{\pi}{\mathrm{4}}\:\mathrm{and}\:\frac{\pi}{\mathrm{2}}\:\mathrm{is}\:\mathrm{below}\:\mathrm{x}−\mathrm{axis} \\ $$$$\mathrm{So},\:\mathrm{the}\:\mathrm{integral}\:\mathrm{must}\:\mathrm{be}\:\mathrm{positive},\:\mathrm{isn}'\mathrm{t}\:\mathrm{it}? \\ $$
Commented by Joel577 last updated on 24/Aug/17
Please explain with more detail Sir Ajfour
$$\mathrm{Please}\:\mathrm{explain}\:\mathrm{with}\:\mathrm{more}\:\mathrm{detail}\:\mathrm{Sir}\:\mathrm{Ajfour} \\ $$
Commented by ajfour last updated on 24/Aug/17
The area from π/4  to  3π/4  is  negative.
$${The}\:{area}\:{from}\:\pi/\mathrm{4}\:\:{to}\:\:\mathrm{3}\pi/\mathrm{4}\:\:{is} \\ $$$${negative}. \\ $$
Commented by Joel577 last updated on 25/Aug/17
Understood. Thank you very much
$${Understood}.\:{Thank}\:{you}\:{very}\:{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *