Question Number 180730 by sciencestudent last updated on 16/Nov/22
$${is}\:{it}\:\sqrt[{\mathrm{3}}]{\mathrm{125}{x}^{\mathrm{3}} }\:\:{a}\:{polynomial}? \\ $$
Answered by Frix last updated on 16/Nov/22
$$\mathrm{No}.\:\mathrm{But}\:\mathrm{for}\:{x}\in\mathbb{R}\:\mathrm{it}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{a}\:\mathrm{polynomial}: \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{125}{x}^{\mathrm{3}} }=\mathrm{5}{x} \\ $$$$\mathrm{Because}\:\mathrm{in}\:\mathbb{R}\:\mathrm{we}\:\mathrm{define}\:\sqrt[{\mathrm{3}}]{−{r}}=−\sqrt[{\mathrm{3}}]{{r}}\:\mathrm{wherelse} \\ $$$$\mathrm{for}\:{x}\in\mathbb{C}\:\mathrm{we}\:\mathrm{have}\:{x}={r}\mathrm{e}^{\mathrm{i}\theta} \:\mathrm{and}\:\sqrt[{\mathrm{3}}]{{x}}=\sqrt[{\mathrm{3}}]{{r}}\mathrm{e}^{\mathrm{i}\frac{\theta}{\mathrm{3}}} . \\ $$$$\mathrm{in}\:\mathbb{R}\:\sqrt[{\mathrm{3}}]{−\mathrm{1}}=−\sqrt[{\mathrm{3}}]{\mathrm{1}}=−\mathrm{1} \\ $$$$\mathrm{in}\:\mathbb{C}\:\sqrt[{\mathrm{3}}]{−\mathrm{1}}=\sqrt[{\mathrm{3}}]{\mathrm{1}}\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{3}}} =\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i} \\ $$
Commented by MJS_new last updated on 16/Nov/22
$$\mathrm{you}'\mathrm{re}\:\mathrm{right} \\ $$