Menu Close

is-it-possible-to-find-the-exact-value-of-I-I-0-pi-sin-sin-x-dx-




Question Number 57653 by MJS last updated on 09/Apr/19
is it possible to find the exact value of I?  I=∫_0 ^π sin (sin x) dx
isitpossibletofindtheexactvalueofI?I=π0sin(sinx)dx
Commented by tanmay.chaudhury50@gmail.com last updated on 09/Apr/19
Commented by tanmay.chaudhury50@gmail.com last updated on 09/Apr/19
Commented by maxmathsup by imad last updated on 10/Apr/19
its only a try   I =∫_0 ^(π/2)  sin(sinx)dx +∫_(π/2) ^π  sin(sinx)dx    chang.sinx = t give ∫_0 ^(π/2)  sin(sinx)dx =∫_0 ^1  sin(t)(dt/( (√(1−t^2 ))))  =∫_0 ^1   ((sint)/( (√(1−t^2 )))) dt   let   ϕ(t) =sint  we have ϕ(t) =ϕ(0)+tϕ^′ (0) +(t^2 /2)ϕ^((2)) (0)+(t^3 /(3!))ϕ^((3)) (0) +...  ϕ^′ (t) =cost ⇒ϕ^′ (0) =1  ϕ^((2)) (t) =−sint ⇒ϕ^((2)) (0) =0  ϕ^((3)) (t) =−cost ⇒ϕ^((3)) (0) =−1⇒ϕ(t) =t−(t^3 /6) +0(t^3 ) ⇒  t−(t^3 /6) ≤sint ≤t      for t ∈[0,(π/2)] ⇒ ((t−(t^3 /6))/( (√(1−t^2 )))) ≤((sint)/( (√(1−t^2 )))) ≤(t/( (√(1−t^2 )))) ⇒  ∫_0 ^1  (t/( (√(1−t^2 )))) −(1/6) ∫_0 ^1  (t^3 /( (√(1−t^2 ))))dt ≤ ∫_0 ^1  ((sint)/( (√(1−t^2 )))) dt ≤ ∫_0 ^1  ((tdt)/( (√(1−t^2 ))))  ∫_0 ^1   (t/( (√(1−t^2 ))))dt =[−(√(1−t^2 ))]_0 ^1  =1  ∫_0 ^1  (t^3 /( (√(1−t^2 )))) dt =_(t =sinθ)   ∫_0 ^(π/2)   ((sin^3 θ)/(cosθ)) cosθ dθ =∫_0 ^(π/2)  sin^3 θ dθ  =∫_0 ^(π/2)  sinθ(1−cos^2 θ)dθ =∫_0 ^(π/(2 )) sinθ dθ −∫_0 ^(π/2)  sinθ cos^2 θ dθ =[−cosθ]_0 ^(π/2) +[(1/3)cos^3 θ]_0 ^(π/2)   =1−(1/3) =(2/3) ⇒1−(1/6) (2/3) ≤ ∫_0 ^1  ((sint)/( (√(1−t^2 )))) dt ≤1 ⇒(8/9) ≤ ∫_0 ^1  ((sint)/( (√(1−t^2 )))) ≤1  also  ∫_(π/2) ^π   sin(sinxdx =_(x =(π/2)+t)    ∫_0 ^(π/2)  sin(cost)dt =_(t =(π/2)−u)   −∫_0 ^(π/2)  sin(sinu)(−du)  =∫_0 ^(π/2)   sin(sinu)du  ⇒ I =2 ∫_0 ^(π/2)  sin(sinu)du =2 ∫_0 ^1  ((sinx)/( (√(1−x^2 )))) dx ⇒  ((16)/9) ≤ ∫_0 ^π   sin(sinx)dx ≤ 2     we can take v_0 =((2+((16)/9))/2) =1+((16)/(18)) =1+(8/9) =((17)/9) ∼ 1,8  as approximate value .  desmos give  ∫ ∼  1,78  and  1,78 ∼1,8  so this answer is a better value....
itsonlyatryI=0π2sin(sinx)dx+π2πsin(sinx)dxchang.sinx=tgive0π2sin(sinx)dx=01sin(t)dt1t2=01sint1t2dtletφ(t)=sintwehaveφ(t)=φ(0)+tφ(0)+t22φ(2)(0)+t33!φ(3)(0)+φ(t)=costφ(0)=1φ(2)(t)=sintφ(2)(0)=0φ(3)(t)=costφ(3)(0)=1φ(t)=tt36+0(t3)tt36sinttfort[0,π2]tt361t2sint1t2t1t201t1t21601t31t2dt01sint1t2dt01tdt1t201t1t2dt=[1t2]01=101t31t2dt=t=sinθ0π2sin3θcosθcosθdθ=0π2sin3θdθ=0π2sinθ(1cos2θ)dθ=0π2sinθdθ0π2sinθcos2θdθ=[cosθ]0π2+[13cos3θ]0π2=113=231162301sint1t2dt18901sint1t21alsoπ2πsin(sinxdx=x=π2+t0π2sin(cost)dt=t=π2u0π2sin(sinu)(du)=0π2sin(sinu)duI=20π2sin(sinu)du=201sinx1x2dx1690πsin(sinx)dx2wecantakev0=2+1692=1+1618=1+89=1791,8asapproximatevalue.desmosgive1,78and1,781,8sothisanswerisabettervalue.
Commented by MJS last updated on 10/Apr/19
thank you for trying
thankyoufortrying
Commented by Abdo msup. last updated on 10/Apr/19
you are always welcome sir.
youarealwayswelcomesir.

Leave a Reply

Your email address will not be published. Required fields are marked *