Question Number 57653 by MJS last updated on 09/Apr/19
$$\mathrm{is}\:\mathrm{it}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{find}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{value}\:\mathrm{of}\:{I}? \\ $$$${I}=\underset{\mathrm{0}} {\overset{\pi} {\int}}\mathrm{sin}\:\left(\mathrm{sin}\:{x}\right)\:{dx} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 09/Apr/19
Commented by tanmay.chaudhury50@gmail.com last updated on 09/Apr/19
Commented by maxmathsup by imad last updated on 10/Apr/19
$${its}\:{only}\:{a}\:{try}\:\:\:{I}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}\left({sinx}\right){dx}\:+\int_{\frac{\pi}{\mathrm{2}}} ^{\pi} \:{sin}\left({sinx}\right){dx}\:\: \\ $$$${chang}.{sinx}\:=\:{t}\:{give}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}\left({sinx}\right){dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:{sin}\left({t}\right)\frac{{dt}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{sint}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}\:{dt}\:\:\:{let}\:\:\:\varphi\left({t}\right)\:={sint}\:\:{we}\:{have}\:\varphi\left({t}\right)\:=\varphi\left(\mathrm{0}\right)+{t}\varphi^{'} \left(\mathrm{0}\right)\:+\frac{{t}^{\mathrm{2}} }{\mathrm{2}}\varphi^{\left(\mathrm{2}\right)} \left(\mathrm{0}\right)+\frac{{t}^{\mathrm{3}} }{\mathrm{3}!}\varphi^{\left(\mathrm{3}\right)} \left(\mathrm{0}\right)\:+… \\ $$$$\varphi^{'} \left({t}\right)\:={cost}\:\Rightarrow\varphi^{'} \left(\mathrm{0}\right)\:=\mathrm{1} \\ $$$$\varphi^{\left(\mathrm{2}\right)} \left({t}\right)\:=−{sint}\:\Rightarrow\varphi^{\left(\mathrm{2}\right)} \left(\mathrm{0}\right)\:=\mathrm{0} \\ $$$$\varphi^{\left(\mathrm{3}\right)} \left({t}\right)\:=−{cost}\:\Rightarrow\varphi^{\left(\mathrm{3}\right)} \left(\mathrm{0}\right)\:=−\mathrm{1}\Rightarrow\varphi\left({t}\right)\:={t}−\frac{{t}^{\mathrm{3}} }{\mathrm{6}}\:+\mathrm{0}\left({t}^{\mathrm{3}} \right)\:\Rightarrow \\ $$$${t}−\frac{{t}^{\mathrm{3}} }{\mathrm{6}}\:\leqslant{sint}\:\leqslant{t}\:\:\:\:\:\:{for}\:{t}\:\in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right]\:\Rightarrow\:\frac{{t}−\frac{{t}^{\mathrm{3}} }{\mathrm{6}}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}\:\leqslant\frac{{sint}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}\:\leqslant\frac{{t}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{t}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}\:−\frac{\mathrm{1}}{\mathrm{6}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{t}^{\mathrm{3}} }{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{dt}\:\leqslant\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{sint}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}\:{dt}\:\leqslant\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{tdt}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{t}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{dt}\:=\left[−\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }\right]_{\mathrm{0}} ^{\mathrm{1}} \:=\mathrm{1} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{t}^{\mathrm{3}} }{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}\:{dt}\:=_{{t}\:={sin}\theta} \:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{sin}^{\mathrm{3}} \theta}{{cos}\theta}\:{cos}\theta\:{d}\theta\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}^{\mathrm{3}} \theta\:{d}\theta \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}\theta\left(\mathrm{1}−{cos}^{\mathrm{2}} \theta\right){d}\theta\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}\:}} {sin}\theta\:{d}\theta\:−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}\theta\:{cos}^{\mathrm{2}} \theta\:{d}\theta\:=\left[−{cos}\theta\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} +\left[\frac{\mathrm{1}}{\mathrm{3}}{cos}^{\mathrm{3}} \theta\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}\:=\frac{\mathrm{2}}{\mathrm{3}}\:\Rightarrow\mathrm{1}−\frac{\mathrm{1}}{\mathrm{6}}\:\frac{\mathrm{2}}{\mathrm{3}}\:\leqslant\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{sint}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}\:{dt}\:\leqslant\mathrm{1}\:\Rightarrow\frac{\mathrm{8}}{\mathrm{9}}\:\leqslant\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{sint}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}\:\leqslant\mathrm{1}\:\:{also} \\ $$$$\int_{\frac{\pi}{\mathrm{2}}} ^{\pi} \:\:{sin}\left({sinxdx}\:=_{{x}\:=\frac{\pi}{\mathrm{2}}+{t}} \:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}\left({cost}\right){dt}\:=_{{t}\:=\frac{\pi}{\mathrm{2}}−{u}} \:\:−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}\left({sinu}\right)\left(−{du}\right)\right. \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:{sin}\left({sinu}\right){du}\:\:\Rightarrow\:{I}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}\left({sinu}\right){du}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{sinx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:{dx}\:\Rightarrow \\ $$$$\frac{\mathrm{16}}{\mathrm{9}}\:\leqslant\:\int_{\mathrm{0}} ^{\pi} \:\:{sin}\left({sinx}\right){dx}\:\leqslant\:\mathrm{2}\:\:\:\:\:{we}\:{can}\:{take}\:{v}_{\mathrm{0}} =\frac{\mathrm{2}+\frac{\mathrm{16}}{\mathrm{9}}}{\mathrm{2}}\:=\mathrm{1}+\frac{\mathrm{16}}{\mathrm{18}}\:=\mathrm{1}+\frac{\mathrm{8}}{\mathrm{9}}\:=\frac{\mathrm{17}}{\mathrm{9}}\:\sim\:\mathrm{1},\mathrm{8} \\ $$$${as}\:{approximate}\:{value}\:. \\ $$$${desmos}\:{give}\:\:\int\:\sim\:\:\mathrm{1},\mathrm{78}\:\:{and}\:\:\mathrm{1},\mathrm{78}\:\sim\mathrm{1},\mathrm{8}\:\:{so}\:{this}\:{answer}\:{is}\:{a}\:{better}\:{value}…. \\ $$
Commented by MJS last updated on 10/Apr/19
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{for}\:\mathrm{trying} \\ $$
Commented by Abdo msup. last updated on 10/Apr/19
$${you}\:{are}\:{always}\:{welcome}\:{sir}. \\ $$