Question Number 57653 by MJS last updated on 09/Apr/19

Commented by tanmay.chaudhury50@gmail.com last updated on 09/Apr/19

Commented by tanmay.chaudhury50@gmail.com last updated on 09/Apr/19

Commented by maxmathsup by imad last updated on 10/Apr/19
![its only a try I =∫_0 ^(π/2) sin(sinx)dx +∫_(π/2) ^π sin(sinx)dx chang.sinx = t give ∫_0 ^(π/2) sin(sinx)dx =∫_0 ^1 sin(t)(dt/( (√(1−t^2 )))) =∫_0 ^1 ((sint)/( (√(1−t^2 )))) dt let ϕ(t) =sint we have ϕ(t) =ϕ(0)+tϕ^′ (0) +(t^2 /2)ϕ^((2)) (0)+(t^3 /(3!))ϕ^((3)) (0) +... ϕ^′ (t) =cost ⇒ϕ^′ (0) =1 ϕ^((2)) (t) =−sint ⇒ϕ^((2)) (0) =0 ϕ^((3)) (t) =−cost ⇒ϕ^((3)) (0) =−1⇒ϕ(t) =t−(t^3 /6) +0(t^3 ) ⇒ t−(t^3 /6) ≤sint ≤t for t ∈[0,(π/2)] ⇒ ((t−(t^3 /6))/( (√(1−t^2 )))) ≤((sint)/( (√(1−t^2 )))) ≤(t/( (√(1−t^2 )))) ⇒ ∫_0 ^1 (t/( (√(1−t^2 )))) −(1/6) ∫_0 ^1 (t^3 /( (√(1−t^2 ))))dt ≤ ∫_0 ^1 ((sint)/( (√(1−t^2 )))) dt ≤ ∫_0 ^1 ((tdt)/( (√(1−t^2 )))) ∫_0 ^1 (t/( (√(1−t^2 ))))dt =[−(√(1−t^2 ))]_0 ^1 =1 ∫_0 ^1 (t^3 /( (√(1−t^2 )))) dt =_(t =sinθ) ∫_0 ^(π/2) ((sin^3 θ)/(cosθ)) cosθ dθ =∫_0 ^(π/2) sin^3 θ dθ =∫_0 ^(π/2) sinθ(1−cos^2 θ)dθ =∫_0 ^(π/(2 )) sinθ dθ −∫_0 ^(π/2) sinθ cos^2 θ dθ =[−cosθ]_0 ^(π/2) +[(1/3)cos^3 θ]_0 ^(π/2) =1−(1/3) =(2/3) ⇒1−(1/6) (2/3) ≤ ∫_0 ^1 ((sint)/( (√(1−t^2 )))) dt ≤1 ⇒(8/9) ≤ ∫_0 ^1 ((sint)/( (√(1−t^2 )))) ≤1 also ∫_(π/2) ^π sin(sinxdx =_(x =(π/2)+t) ∫_0 ^(π/2) sin(cost)dt =_(t =(π/2)−u) −∫_0 ^(π/2) sin(sinu)(−du) =∫_0 ^(π/2) sin(sinu)du ⇒ I =2 ∫_0 ^(π/2) sin(sinu)du =2 ∫_0 ^1 ((sinx)/( (√(1−x^2 )))) dx ⇒ ((16)/9) ≤ ∫_0 ^π sin(sinx)dx ≤ 2 we can take v_0 =((2+((16)/9))/2) =1+((16)/(18)) =1+(8/9) =((17)/9) ∼ 1,8 as approximate value . desmos give ∫ ∼ 1,78 and 1,78 ∼1,8 so this answer is a better value....](https://www.tinkutara.com/question/Q57679.png)
Commented by MJS last updated on 10/Apr/19

Commented by Abdo msup. last updated on 10/Apr/19
