Menu Close

is-it-possible-to-have-1-1-x-4-1-2-1-1-2x-4-please-help-




Question Number 120301 by TITA last updated on 30/Oct/20
is it possible to have(1+(1/x^4 ))^(1/2) =(1+(1/(2x^4 ))) please help
$${is}\:{it}\:{possible}\:{to}\:{have}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{4}} }\right)^{\frac{\mathrm{1}}{\mathrm{2}}} =\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{4}} }\right)\:{please}\:{help} \\ $$
Commented by Dwaipayan Shikari last updated on 30/Oct/20
When  x→∞
$${When} \\ $$$${x}\rightarrow\infty \\ $$
Commented by bemath last updated on 30/Oct/20
in limit it is possible.  lim_(x→0)  (1± f(x))^n  = lim_(x→0) (1±n f(x))
$${in}\:{limit}\:{it}\:{is}\:{possible}. \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{1}\pm\:{f}\left({x}\right)\right)^{{n}} \:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{1}\pm{n}\:{f}\left({x}\right)\right) \\ $$
Commented by Bird last updated on 30/Oct/20
if  f(x)→0 when x→0 we get  (1+f(x))^n ∼1+nf(x)
$${if}\:\:{f}\left({x}\right)\rightarrow\mathrm{0}\:{when}\:{x}\rightarrow\mathrm{0}\:{we}\:{get} \\ $$$$\left(\mathrm{1}+{f}\left({x}\right)\right)^{{n}} \sim\mathrm{1}+{nf}\left({x}\right) \\ $$
Answered by Bird last updated on 30/Oct/20
for x→∞  (very big value)
$${for}\:{x}\rightarrow\infty\:\:\left({very}\:{big}\:{value}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *