Menu Close

Is-mass-of-a-body-greatest-at-the-poles-If-yes-or-no-reason-please-With-diagram-if-possible-thanks-




Question Number 170326 by learner22 last updated on 21/May/22
Is mass of a body greatest at the poles?.  If yes or no, reason please?  With diagram if possible. thanks
$$\boldsymbol{\mathrm{Is}}\:\boldsymbol{\mathrm{mass}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{body}}\:\boldsymbol{\mathrm{greatest}}\:\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{poles}}?. \\ $$$$\boldsymbol{\mathrm{If}}\:\boldsymbol{\mathrm{yes}}\:\boldsymbol{\mathrm{or}}\:\boldsymbol{\mathrm{no}},\:\boldsymbol{\mathrm{reason}}\:\boldsymbol{\mathrm{please}}? \\ $$$$\boldsymbol{\mathrm{With}}\:\boldsymbol{\mathrm{diagram}}\:\boldsymbol{\mathrm{if}}\:\boldsymbol{\mathrm{possible}}.\:\boldsymbol{\mathrm{thanks}} \\ $$
Commented by mr W last updated on 21/May/22
the mass of an object is always the  same, no matter where the object is.  but its weight varies, depending on  where it is, or to be exact, on its  distance to the center of the earth.   on the surface of the earth, the   weight of an object is  greatest at the poles and smallest  at the equator. this is because the  earth is not a perfect sphere. the  distance from its surface to its center  is smallest at the poles, and the   greatest at the equator.  at the equator a man′s weight is only  99.65% of his weight at the poles.
$${the}\:{mass}\:{of}\:{an}\:{object}\:{is}\:{always}\:{the} \\ $$$${same},\:{no}\:{matter}\:{where}\:{the}\:{object}\:{is}. \\ $$$${but}\:{its}\:{weight}\:{varies},\:{depending}\:{on} \\ $$$${where}\:{it}\:{is},\:{or}\:{to}\:{be}\:{exact},\:{on}\:{its} \\ $$$${distance}\:{to}\:{the}\:{center}\:{of}\:{the}\:{earth}.\: \\ $$$${on}\:{the}\:{surface}\:{of}\:{the}\:{earth},\:{the}\: \\ $$$${weight}\:{of}\:{an}\:{object}\:{is} \\ $$$${greatest}\:{at}\:{the}\:{poles}\:{and}\:{smallest} \\ $$$${at}\:{the}\:{equator}.\:{this}\:{is}\:{because}\:{the} \\ $$$${earth}\:{is}\:{not}\:{a}\:{perfect}\:{sphere}.\:{the} \\ $$$${distance}\:{from}\:{its}\:{surface}\:{to}\:{its}\:{center} \\ $$$${is}\:{smallest}\:{at}\:{the}\:{poles},\:{and}\:{the}\: \\ $$$${greatest}\:{at}\:{the}\:{equator}. \\ $$$${at}\:{the}\:{equator}\:{a}\:{man}'{s}\:{weight}\:{is}\:{only} \\ $$$$\mathrm{99}.\mathrm{65\%}\:{of}\:{his}\:{weight}\:{at}\:{the}\:{poles}. \\ $$
Commented by mr W last updated on 21/May/22
Commented by learner22 last updated on 21/May/22
Thanks sir.
$$\boldsymbol{\mathrm{Thanks}}\:\boldsymbol{\mathrm{sir}}. \\ $$
Commented by learner22 last updated on 21/May/22
I appreciate.
$$\boldsymbol{\mathrm{I}}\:\boldsymbol{\mathrm{appreciate}}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *